数据科学之道:数据和特征决定了模型的上限
np.log([1, 2, 3, 4])
np.exp([1, 2, 3, 4])
import numpy as np
import pandas as pd
lst = [6,8,10,15,23,24,25,40,67]
#等深分箱,平均处理数据长度,缺点:忽略了数据本身的相似性,指按照比例划分
pd.qcut(lst, q=3, labels=['low', 'medium', 'high'])
[low, low, low, medium, medium, medium, high, high, high]
Categories (3, object): [low < medium < high]
#等宽分箱, 平均处理数据大小
pd.cut(lst, bins=3, labels=['low', 'medium', 'high'])
[low, low, low, low, low, low, low, medium, high]
Categories (3, object): [low < medium < high]
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
#LabelEncoder 默认按文本排序编码(字母顺序)
le = LabelEncoder()
le.fit_transform(np.array(['low', 'medium', 'high', 'low', 'high']))
array([1, 2, 0, 1, 0])
# OneHotEncoder可以特征扩维
ohe = OneHotEncoder()
ohe.fit_transform(np.array(['low', 'medium', 'high', 'low', 'high']).reshape(-1, 1)).toarray()
array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.],
[0., 1., 0.],
[1., 0., 0.]])
from sklearn.preprocessing import Normalizer
w1 = Normalizer(norm='l1').fit_transform(np.array([[1,1,3,-1,2]]))
w2 = Normalizer(norm='l2').fit_transform(np.array([[1,1,3,-1,2]]))
print('L1 result:{0}'.format(w1))
print('L2 result:{0}'.format(w2))
L1 result:[[ 0.125 0.125 0.375 -0.125 0.25 ]]
L2 result:[[ 0.25 0.25 0.75 -0.25 0.5 ]]
from sklearn.preprocessing import MinMaxScaler, StandardScaler
MinMaxScaler().fit_transform(np.array([1,4,10,15,21]).reshape(-1, 1))
array([[0. ],
[0.15],
[0.45],
[0.7 ],
[1. ]])
StandardScaler().fit_transform(np.array([1,1,1,1,0,0,0,0]).reshape(-1, 1))
array([[ 1.],
[ 1.],
[ 1.],
[ 1.],
[-1.],
[-1.],
[-1.],
[-1.]])
import scipy.stats as ss
df = pd.DataFrame({'A': ss.norm.rvs(size=10),
'B': ss.norm.rvs(size=10),
'C': ss.norm.rvs(size=10),
'D': np.random.randint(0, 2, size=10)})
df
A | B | C | D | |
---|---|---|---|---|
0 | -0.522492 | -1.671651 | -0.521180 | 0 |
1 | -0.296905 | -0.133171 | 0.690886 | 0 |
2 | -1.513831 | 1.692004 | -1.834309 | 1 |
3 | 0.330659 | 0.853364 | -0.469857 | 1 |
4 | 1.036587 | -0.026622 | 1.542153 | 0 |
5 | -0.549018 | -0.152596 | -0.990311 | 0 |
6 | -0.398492 | -0.524535 | 0.126561 | 0 |
7 | -0.129485 | -0.849878 | 0.524084 | 0 |
8 | -0.588652 | 0.422335 | 2.132306 | 1 |
9 | 0.648563 | -0.689916 | 0.174930 | 1 |