动手学深度学习(五):卷积神经网络

卷积神经网络基础

卷积神经网络(convolutional neural network)是含有卷积层(convolutional layer)的神经网络。本文中介绍的卷积神经网络均使用最常见的二维卷积层。它有高和宽两个空间维度,常用来处理图像数据。本文中,我们将介绍简单形式的二维卷积层的工作原理。

1、二维互相关运算

虽然卷积层得名于卷积(convolution)运算,但我们通常在卷积层中使用更加直观的互相关(cross-correlation)运算。在二维卷积层中,一个二维输入数组和一个二维核(kernel)数组通过互相关运算输出一个二维数组。 我们用一个具体例子来解释二维互相关运算的含义。如图5.1所示,输入是一个高和宽均为3的二维数组。我们将该数组的形状记为3×3或(3,3)。核数组的高和宽分别为2。该数组在卷积计算中又称卷积核或过滤器(filter)。卷积核窗口(又称卷积窗口)的形状取决于卷积核的高和宽,即2×2。图5.1中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0×0+1×1+3×2+4×3=19。
动手学深度学习(五):卷积神经网络_第1张图片
在二维互相关运算中,卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。当卷积窗口滑动到某一位置时,窗口中的输入子数组与核数组按元素相乘并求和,得到输出数组中相应位置的元素。图5.1中的输出数组高和宽分别为2,其中的4个元素由二维互相关运算得出:
动手学深度学习(五):卷积神经网络_第2张图片

2、二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏差来得到输出。卷积层的模型参数包括了卷积核和标量偏差。在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差。

3、图像中物体边缘检测

卷积层的简单应用:检测图像中物体的边缘,即找到像素变化的位置。首先我们构造一张6×8的图像(即高和宽分别为6像素和8像素的图像)。它中间4列为黑(0),其余为白(1)

4、通过数据学习核数组

来看一个例子,它使用物体边缘检测中的输入数据X和输出数据Y来学习我们构造的核数组K。我们首先构造一个卷积层,将其卷积核初始化成随机数组。接下来在每一次迭代中,我们使用平方误差来比较Y和卷积层的输出,然后计算梯度来更新权重。简单起见,这里的卷积层忽略了偏差。

5、互相关运算和卷积运算

LeNet模型

卷积层尝试解决这两个问题。一方面,卷积层保留输入形状,使图像的像素在高和宽两个方向上的相关性均可能被有效识别;另一方面,卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

卷积神经网络就是含卷积层的网络。本文将介绍一个早期用来识别手写数字图像的卷积神经网络:LeNet [1]。这个名字来源于LeNet论文的第一作者Yann LeCun。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。

1、简介 LeNet模型

LeNet分为卷积层块和全连接层块两个部分。下面将分别介绍这两个模块。

卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为2×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

卷积层块的输出形状为(批量大小, 通道, 高, 宽)。当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

2、获取数据和训练模型

3、小结

(1)卷积神经网络就是含卷积层的网络。
(2)LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。

你可能感兴趣的:(深度学习)