三维激光扫描仪点云数据处理与建模

无意间看到的一段话,记录下来可以在写本子时借鉴一下。

点云的预处理

由于三维激光扫描仪在扫描过程中,外界环境因素对扫描目标的阻挡和遮掩,如移动的车辆、行人树木的遮挡,及实体本身的反射特性不均匀,需要对点云经行过滤,剔除点云数据内含有的不稳定点和错误点。实际操作中,需要选择合适的过滤算法来配合这一过程自动完成。

点云配准

使用控制点配准,将点云配准到控制网坐标系下;靶标缺失的点云,利用公共区域寻找同名点对其进行两两配准,当同名点对不能找到时,利用人工配准法。后两种方法均为两两配准,为了将所有点云转换到统一的控制网坐标系下与控制点配准法得到点云配在一起,两两配准时要求其中一站必须为已经配到控制网坐标系下的点云。

点云拼接

采集的数据导入至软件时会根据坐标点自动拼接,但由于人为操作和角架的误差,一些点云接合处不太理想,这时需要进行手动拼接,对一些无坐标补扫面的拼接也需手动处理。手动拼接时对点云应适当压缩,选择突出、尖角、不同平面的特征点,以降低操作误差。如采用1cm激光间隔扫描时拼接后的误差在3mm以下较为理想。

建立三维模型

当建筑物数字化为大量离散的空间点云数据后,在此基础上来构造建筑物的三维模型。

点云的漏洞修复

由于点云本身的离散性,会导致模型存在一定缺陷,需要在多边形阶段对其进行修补、调整等操作后,才能得到准确的实物数字模型。由于建筑物形状复杂多样,所以目前网格的修补难以实现全自动化。三维激光扫描仪点云数据的漏洞修复主要采用两种方法:当空洞出现在平面区域内,比如窗户或者墙面上的洞,可采用线性插值的方法填补空洞数据;当空洞出现在非平面区域,如圆柱上出现的漏洞,可采取二次曲面插值方法。

你可能感兴趣的:(详细)