tensorflow入门学习(七)

tensorboard使用方法
1、先把tensorboard的所在位置添加到环境变量里面,如xxx/Scripts
2、cd 到 程序保存盘
3、tensorboard --logdir=‘xxxx/logs/’
4、浏览器打开网址

import tensorflow.examples.tutorials.mnist.input_data as input_data
import tensorflow as tf
import time

start = time.clock()
mnist = input_data.read_data_sets("./MNIST_data", one_hot=True)

batch_size = 50
n_batch = mnist.train.num_examples // batch_size

with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y = tf.placeholder(tf.float32, [None, 10], name='y-input')

with tf.name_scope('layer'):
    with tf.name_scope('weights'):
        W = tf.Variable(tf.zeros([784, 10]), name='W')
    with tf.name_scope('biases'):
        b = tf.Variable(tf.zeros([10]), name='b')
    with tf.name_scope('wx_plus_b'):
        wx_plus_b = tf.matmul(x, W) + b
    with tf.name_scope('softmax'):
        predict = tf.nn.softmax(wx_plus_b)

with tf.name_scope('loss'):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=predict))

with tf.name_scope('train'):
    train_step = tf.train.GradientDescentOptimizer(1e-2).minimize(loss)


with tf.name_scope('accuracies'):
    with tf.name_scope('correct_predict'):
        correct_predict = tf.equal(tf.argmax(predict, 1), tf.argmax(y, 1))
    with tf.name_scope('accuracy'):
        accuracy = tf.reduce_mean(tf.cast(correct_predict, tf.float32))

init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
   #writer = tf.summary.FileWriter('logs/', sess.graph)
   writer = tf.summary.FileWriter('logs/', sess.graph)#运行自动生成logs位置,生成文件。
    for epoch in range(1):
        for batch in range(n_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})

        acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Iter" + str(epoch) + ",Testing Accuracy" + str(acc))

elapsed = (time.clock() - start)
print("Time used:", elapsed)

tensorflow入门学习(七)_第1张图片

你可能感兴趣的:(学习总结)