hadoop学习(八)Hadoop2.2.0+HA+zookeeper3.4.5详细配置过程+错误处理(1)

Hadoop2.2.0+HA+zookeeper3.4.5+体系结构+错误处理

        心血之作,在熟悉hadoop2架构的过程耽误了太长时间,在搭建环境过程遇到一些问题,这些问题一直卡在那儿,不得以解决,耽误了时间。最后,千寻万寻,把问题解决,多谢在过程提供帮助的大侠。这篇文章中,我也会把自己遇到的问题给列出来,帮助后来者进一步的学习。

       这篇文章结合自己实际测试过程。转载注明出处:

       http://blog.csdn.net/yczws1/article/details/23566383

前言

       本文主要通过对hadoop2.2.0集群配置的过程加以梳理,所有的步骤都是通过自己实际测试。文档的结构也是根据自己的实际情况而定,同时也会加入自己在实际过程遇到的问题。搭建环境过程不重要,重要点在于搭建过程中遇到的问题,解决问题的过程。

       可能自己遇到的问题在一些由经验的老者手上都不是问题,但是这些问题着实让自己耽误了很长时间,最后问题解决也是费了太大心血。也通过这篇文档,表现出来,算是总结,为后者提供意见。

Hadoop2.2.0体系结构

       要想理解本节内容,首先需要了解hadoop1的体系结构。这里不过多的介绍基于hadoop1的体系架构,早在之前,曾搭建hadoop1.2.1伪分布式集群,详细请看hadoop学习(一)hadoop-1.2.1伪分布式配置及遇到的问题。这里主要介绍hadoop2的体系架构。

        hadoop1的核心组成是两部分,即HDFSMapReduce。在hadoop2中变为HDFSYarn

        新的HDFS中的NameNode不再是只有一个了,可以有多个(目前只支持2个)。每一个都有相同的职能。

        这两个NameNode的地位如何:一个是active状态的,一个是standby状态的。当 集群运行时,只有active状态的NameNode是正常工作的,standby状态的NameNode是处于待命状态的,时刻同步active状态 NameNode的数据。一旦active状态的NameNode不能工作,通过手工或者自动切换,standby状态的NameNode就可以转变为 active状态的,就可以继续工作了。这就是高可靠。

        当NameNode发生故障时,他们的数据如何保持一致:在这里,2NameNode的数据其实是实时共享的。新HDFS采用了一种共享机制,JournalNode集群或者NFS进行共享。NFS是操作系统层面的,JournalNodehadoop层面的,我们这里使用JournalNode集群进行数据共享。

        如何实现NameNode的自动切换:这就需要使用ZooKeeper集群进行选择了。HDFS集群中的两个NameNode都在ZooKeeper中注册,当active状态的NameNode出故障时,ZooKeeper能检测到这种情况,它就会自动把standby状态的NameNode切换为active状态。

        HDFS FederationHDFS联盟):联盟的出现是有原因的。我们知道 NameNode是核心节点,维护着整个HDFS中的元数据信息,那么其容量是有限的,受制于服务器的内存空间。当NameNode服务器的内存装不下数据后,那么HDFS集群就装不下数据了,寿命也就到头了。因此其扩展性是受限的。HDFS联盟指的是有多个HDFS集群同时工作,那么其容量理论上就不受限了,夸张点说就是无限扩展。你可以理解成,一个总集群中,可以虚拟出两个或两个以上的单独的小集群,各个小集群之间数据是实时共享的。因为hadoop集群中已经不在单独存在namenodedatanode的概念。当一个其中一个小集群出故障,可以启动另一个小集群中的namenode节点,继续工作。因为数据是实时共享,即使namenodedatanode一起死掉,也不会影响整个集群的正常工作。

集群节点任务安排:

        这点很重要,我们事先一定要先理解,节点之间任务是如何安排的。如果事先不理解为什么是这样,后面还会遇到更多的问题。这就需要,理解journalnodezookeeperdatanodenamenode之间关系。自己也是在这上面耽误了很长时间,希望读者这点多注意下。

        6台主机。

hadoop学习(八)Hadoop2.2.0+HA+zookeeper3.4.5详细配置过程+错误处理(1)_第1张图片

        Journalnodezookeeper保持奇数点,这点大家要有个概念,最少不少于3个节点。这里暂不讲解。

        两个namenode上面已经说明,其实在hadoop2中几点之间namenodedatanode之间的划分已经不是那么明确了。这只是采用后4台机器作为namenode。这里也存在一个问题:如果把datanodenamenode放在一起,对数据的读取IO的效率肯定会有一定的影响,不同机器之间还是要通过网线和http请求完成数据之间的共享。实际中,两者是可以在一起。但是我不知道在一起和不在一起之间的主要区别在哪儿,上面的解释只是个人意见,如果读者有更好的意见可以留言,大家一起讨论。

       在集群搭建之间,各主机设置静态IP、更改主机名称、主机之间ssh互联等相关设置这里不在多讲。如有需要,请参考:hadoop学习(五)Hadoop2.2.0完全分布式安装详解(1配置文档。

       下面就进入正式的集群的安装过程:

       下面所有的过程都是在hadoop1机器上完成的,之后把文件复制到其他节点中。

Zookeeper安装过程:

1、下载解压zookeeper

       下载地址:http://mirror.bit.edu.cn/apache/zookeeper/zookeeper-3.4.5/

       解压到指定目录:这里目录:/home/tom/yarn/hadoop-2.2.0/app/

       在hadoop目录中创建app目录。把文件解压到hadoopapp目录中,是为了以后整个项目可以整体移植。包括后面,我们会安装HBaseHive等软件,都是解压到app的目录中。

2、修改配置文件

2.1进入zookeeperconf目录:

       拷贝命名zoo_sample.cfg zoo.cfg。我们一般不修改配置文件默认的示例文件,修改赋值其子文件。

       编辑zoo.cfg

       tickTime=2000
       initLimit=10
       syncLimit=5
       dataDir=/home/tom/yarn/hadoop-2.2.0/app/zookeeper-3.4.5/zkdata
       dataLogDir=/home/tom/yarn/hadoop-2.2.0/app/zookeeper-3.4.5/zkdatalog
       clientPort=2181
       server.1=hadoop1:2888:3888
       server.2=hadoop2:2888:3888 
       server.3=hadoop3:2888:3888
       server.4=hadoop4:2888:3888
       server.5=hadoop5:2888:3888

2.2创建zkdatazkdatalog两个文件夹

       在zookeeper的目录中,创建上述两个文件夹。进入zkdata文件夹,创建文件myid,填入1。这里写入的1,是在zoo.cfg文本中的server.1中的1。当我们把所有文件都配置完毕,我们把hadoop1yarn目录复制到其它机器中,我们在修改每台机器中对应的myid文本,hadoop2中的myid写入2。其余节点,安照上面配置,依此写入相应的数字。Zkdatalog文件夹,是为了指定zookeeper产生日志指定相应的路径。

3、添加环境变量

       本机环境变量添是在/etc/profile目录中添加的。

        export ZOOKEEPER_HOME=/home/tom/yarn/hadoop-2.2.0/app/zookeeper-3.4.5
        PATH=$ZOOKEEPER_HOME/bin:$PATH

        添加ZOOKEEPER_HOME/bin目录可以在原有的PATH后面加入

        :$ZOOKEEPER_HOME/bin

        关于环境变量修改/etc目录下的profile文件,也可以在根目录下的.bashrc目录下添加环境变量。这两者有什么区别:.bashrc是对当前目录用户的环境变量,profile文件是对所有用户都开放的目录。当系统加载文件中,先从profile找相应的路劲,如果没有会在.bashrc文件中找对应的环境变量路径。这两者大家稍至了解。

        然后 source /etc/profile

       上面3个步骤就安装zookeeper完毕。然后就是测试zookeeper,这个放到后面等hadoop1上整体配置完毕,scp到其它主机上后,再一起测试。

Hadoop配置

1、下载解压hadoop2.2.0

        路径:http://apache.dataguru.cn/hadoop/common/hadoop-2.2.0/

       解压到:/home/tom/yarn/下。其实这一步应该在解压zookeeper之前。不再多讲。

2、修改配置文件

        这里要修改配置文件一共包括6个,分别是在hadoop-env.shcore-site.xmlhdfs-site.xmlmapred-site.xml、 yarn-site.xmlslaves

        修改文件的目录地址:/home/tom/yarn/hadoop-2.2.0/etc/hadoop/

2.1文件hadoop-env.sh

        添加jdk环境变量:

        export JAVA_HOME=/usr/lib/jvm/jdk1.7.0_45

2.2文件coer-site.xml

       
                
                fs.defaultFS    
                hdfs://cluster1    
            
         【这里的值指的是默认的HDFS路径。这里只有一个HDFS集群,在这里指定!该值来自于hdfs-site.xml中的配置】    
                
                  hadoop.tmp.dir   
                  /home/tom/yarn/yarn_data/tmp   
            
          【这里的路径默认是NameNode、DataNode、JournalNode等存放数据的公共目录。用户也可以自己单独指定这三类节点的目录。这里的yarn_data/tmp目录与文件都是自己创建的】    
                
                 ha.zookeeper.quorum    
                 hadoop1:2181,hadoop2:2181,hadoop3:2181,hadoop4:2181,hadoop5:2181   
            
          【这里是ZooKeeper集群的地址和端口。注意,数量一定是奇数,且不少于三个节点】    
        

2.3文件hdfs-site.xml

重点核心文件:
        
          
             dfs.replication
             2
          
          【指定DataNode存储block的副本数量。默认值是3个,我们现在有4个DataNode,该值不大于4即可。】    
          
             dfs.permissions
             false
          
          
             dfs.permissions.enabled
             false
          
              
             dfs.nameservices  
             cluster1    
          
         【给hdfs集群起名字】
          
            dfs.ha.namenodes.cluster1
            hadoop1,hadoop2
          
        【指定NameService是cluster1时的namenode有哪些,这里的值也是逻辑名称,名字随便起,相互不重复即可】  
         
            dfs.namenode.rpc-address.cluster1.hadoop1
            hadoop1:9000
         
        【指定hadoop101的RPC地址】 
             
           dfs.namenode.http-address.cluster1.hadoop1    
           hadoop1:50070    
         
         【指定hadoop101的http地址】   
             
           dfs.namenode.rpc-address.cluster1.hadoop2    
           hadoop2:9000    
         
             
           dfs.namenode.http-address.cluster1.hadoop2    
           hadoop2:50070   
         
         
           dfs.namenode.servicerpc-address.cluster1.hadoop1
           hadoop1:53310
         
         
           dfs.namenode.servicerpc-address.cluster1.hadoop2
           hadoop2:53310
         
           
           dfs.ha.automatic-failover.enabled.cluster1  
           true  
            
     【指定cluster1是否启动自动故障恢复,即当NameNode出故障时,是否自动切换到另一台NameNode】
       
   
       dfs.namenode.shared.edits.dir       qjournal://hadoop1:8485;hadoop2:8485;hadoop3:8485;hadoop4:8485;hadoop5:8485/cluster1
   
    【指定cluster1的两个NameNode共享edits文件目录时,使用的JournalNode集群信息】
       
 dfs.client.failover.proxy.provider.cluster1       org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider
       
    【指定cluster1出故障时,哪个实现类负责执行故障切换】
         
          dfs.journalnode.edits.dir    
          /home/tom/yarn/yarn_data/tmp/journal    
     
      【指定JournalNode集群在对NameNode的目录进行共享时,自己存储数据的磁盘路径。tmp路径是自己创建,journal是启动journalnode自动生成】    
           
          dfs.ha.fencing.methods    
          sshfence    
       
      【一旦需要NameNode切换,使用ssh方式进行操作】 
          
           dfs.ha.fencing.ssh.private-key-files    
           /home/tom/.ssh/id_rsa    
       
     【如果使用ssh进行故障切换,使用ssh通信时用的密钥存储的位置】
       
           dfs.ha.fencing.ssh.connect-timeout
           10000
       
       
           dfs.namenode.handler.count
           100
      
      

2.4文件mapred-site.xml

     
       
           mapreduce.framework.name
           yarn
      
     
    【指定运行mapreduce的环境是yarn,与hadoop1不同的地方】

2.5文件yarn-site.xml

    
          
         yarn.resourcemanager.hostname    
         hadoop1    
      
    【自定义ResourceManager的地址,还是单点】
      
         yarn.nodemanager.aux-services
         mapreduce.shuffle
      
   

2.6文件slaves

      添加:这里指定哪台机器是datanode,这里指定4台机器。你甚至可以把集群所有机器都当做datanode

       hadoop3
       hadoop4
       hadoop5
       hadoop6

3、添加环境变量

       环境变量的添加方法大都相同。这里给出我所有环境变量配置,大家可以根据自己的需要参考一下。

       这里我们只要添加HADOOP_HOME环境变量。

      JAVA_HOME=/usr/lib/jvm/jdk1.7.0_51   
      export PATH=$PATH:$JAVA_HOME/bin
      export HBASE_HOME=/home/tom/hadoop-2.2.0/app/hbase-0.94.6-cdh4.4.0
      export HIVE_HOME=/home/tom/hadoop-2.2.0/app/hive-0.12.0/
      export HADOOP_HOME=/home/tom/hadoop-2.2.0
      export PATH=$PATH:$HBASE_HOME/bin:$HIVE_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
      export CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar
      export ZOOKEEPER_HOME=/home/tom/yarn/hadoop-2.2.0/app/zookeeper-3.4.5
      export PATH=$PATH:$ZOOKEEPER_HOME/bin

4、复制到其它节点

       在hadoop的的根目录下(即:/home/tom目录下):因为我们所有的环境都装载在hadoop1tom目录下。

执行:

        scp -r yarn hadoop2:/home/tom
        scp -r yarn hadoop3:/home/tom
        scp -r yarn hadoop4:/home/tom
        scp -r yarn hadoop5:/home/tom
        scp -r yarn hadoop6:/home/tom

注意点:

      1、因为我们是把整个yarn目录复制到其他节点中,zookeeper也包含在内。事先我们定义zookeeper是在1-5台机器上部署。这里我们虽然把zookeeper拷贝到6机器中,但是我们再zookeeper配置文件中没有配置6机器的节点,在启动zookeeper的时候,6机器也不需要启动。

      2、现在要做的是进入zookeeper目录下的zkdata目录,修改myid文件:各个myid内容对应zoo.cfg文件中server对应的编号。

       按照上面的3个大步骤,以及在注释中自己要创建的文件夹,指定相应的路径之后,整体的hadoop环境算是搭建完毕。下面就是等测试。

        看似简单的不能再简单的搭建过程,这是你弄明白之后的事情。在从hadoop12之间的过度,主要的变化是namenodemapreduceyarn架构之间的变化。就在这简单的配置过程中,加上可参考网上众多配置教程,也耽误了太长时间。不是文件难配置,而是在出现问题,不知道怎么解决,就一直卡在那儿。咨询过一些大牛,但是他们也是搪塞,没有给出真正问题的原因。其中有一个问题,在QQ群中,咨询过一个人,从他那边才得到启发,把其中的一个问题给解决掉。这也是我们遇到的问题,没有一个平台,导致在一些别人看似不是问题的问题上耽误太长时间。


         上面的任务完成后。下面才是非常关键的步骤,任务的重中之重,同时也是问题出现的地方,也是卡时间最多的地方:测试整个集群的性能。由下一篇博客介绍。

 


Copyright©BUAA

你可能感兴趣的:(BigDate,Hadoop)