LRU Cache的简单c++实现

什么是 LRU


LRU Cache是一个Cache的置换算法,含义是“最近最少使用”,把满足“最近最少使用”的数据从Cache中剔除出去,并且保证Cache中第一个数据是最近刚刚访问的,因为这样的数据更有可能被接下来的程序所访问。

LRU的应用比较广泛,最基础的内存页置换中就用了,对了,这里有个概念要清楚一下,Cache不见得是CPU的高速缓存的那个Cache,这里的Cache直接翻译为缓存,就是两种存储方式的速度有比较大的差别,都可以用Cache缓存数据,比如硬盘明显比内存慢,所以常用的数据我们可以Cache在内存中。

LRU基本算法描述


前提:

  • 由于我只是简单实现一下这个算法,所以数据都用int代替,下一个版本会改成模板形式的,更加通用。

要求:

  • 只提供两个接口,一个获取数据getValue(key),一个写入数据putValue(key,value)
  • 无论是获取还是写入数据,当前这个数据要保持在最容易访问的位置
  • 缓存数量有限,最长时间没被访问的数据应该置换出缓存

算法:

为了满足上面几个条件,实际上可以用一个双向链表来实现,每次访问完数据(不管是获取还是写入),调整双向链表的顺序,把刚刚访问的数据调整到链表的最前方,以后再访问的时候速度将最快。

为了方便,提供一个头和一个尾节点,不存具体的数,链表的基本形式如下面的这个简单表述

Head <===> Node1 <===> Node2 <===> Node3 <===> Near


OK,就这么些,比较简单,实现起来也不难,用c++封装一个LRUCache类,类提供两个方法,分别是获取和更新,初始化类的时候传入Cache的节点数。


先定义一个存数据的节点数据结构


typedef struct _Node_{

	int key;    //键
	int value;  //数据
	
	struct _Node_ *next;  //下一个节点
	struct _Node_ *pre;   //上一个节点

}CacheNode;

类定义:


class LRUCache{
	
public:
	
	LRUCache(int cache_size=10);  //构造函数,默认cache大小为10
	~LRUCache();		      //析构函数


	int getValue(int key);	           //获取值
	bool putValue(int key,int value);  //写入或更新值	
	void displayNodes();               //辅助函数,显示所有节点
	
	
private:
	
	int cache_size_;                   //cache长度
	int cache_real_size_;              //目前使用的长度
	CacheNode *p_cache_list_head;      //头节点指针
	CacheNode *p_cache_list_near;      //尾节点指针
		
	void detachNode(CacheNode *node);  //分离节点
	void addToFront(CacheNode *node);  //将节点插入到第一个

};

类实现:

LRUCache::LRUCache(int cache_size)
{
	cache_size_=cache_size;
	cache_real_size_=0;
	p_cache_list_head=new CacheNode();
	p_cache_list_near=new CacheNode();
	p_cache_list_head->next=p_cache_list_near;
	p_cache_list_head->pre=NULL;
	p_cache_list_near->pre=p_cache_list_head;
	p_cache_list_near->next=NULL;
	
}

LRUCache::~LRUCache()
{
	CacheNode *p;
	p=p_cache_list_head->next;
	while(p!=NULL)
	{	
		delete p->pre;
		p=p->next;
	}

	delete p_cache_list_near;
	
}


void LRUCache::detachNode(CacheNode *node)
{
	node->pre->next=node->next;
	node->next->pre=node->pre;
}

void LRUCache::addToFront(CacheNode *node)
{
	node->next=p_cache_list_head->next;
	p_cache_list_head->next->pre=node;
	p_cache_list_head->next=node;
	node->pre=p_cache_list_head;
}


int LRUCache::getValue(int key)
{
	CacheNode *p=p_cache_list_head->next;	
	while(p->next!=NULL)
	{
		
		if(p->key == key) //catch node
		{
			
			detachNode(p);
			addToFront(p);
			return p->value;
		}	
		p=p->next;	
	}
	return -1;
}



bool LRUCache::putValue(int key,int value)
{
	CacheNode *p=p_cache_list_head->next;
	while(p->next!=NULL)
	{
		
		
		if(p->key == key) //catch node
		{
			p->value=value;
			getValue(key);
			return true;
		}	
		p=p->next;	
	}
	
	
	if(cache_real_size_ >= cache_size_)
	{
		cout << "free" <pre->pre;
		delete p->next;
		p->next=p_cache_list_near;
		p_cache_list_near->pre=p;
	}
	
	p=new CacheNode();//(CacheNode *)malloc(sizeof(CacheNode));
	
	if(p==NULL)
		return false;

	addToFront(p);
	p->key=key;
	p->value=value;
		
	cache_real_size_++;
		
	return true;	
}


void LRUCache::displayNodes()
{
	CacheNode *p=p_cache_list_head->next;
	
	while(p->next!=NULL)
	{
		cout << " Key : " << p->key << " Value : " << p->value << endl; 
		p=p->next;
		
	}
	cout << endl;
	
}


说着后面的话


其实,程序还可以优化,首先,把数据int类型换成模板形式的通用类型,另外,数据查找的时候复杂度为O(n),可以换成hash表来存数据,链表只做置换处理,这样查找添加的时候速度将快很多。





你可能感兴趣的:(c/c++)