人脸检测--SSH: Single Stage Headless Face Detector

SSH: Single Stage Headless Face Detector
ICCV2017
https://github.com/mahyarnajibi/SSH

本文的人脸检测算法走的是又快又好的路子,类似于目标检测中的 SSD算法思路。
人脸检测--SSH: Single Stage Headless Face Detector_第1张图片

SSH is designed to decrease inference time, have a low memory foot-print, and be scale-invariant, single-stage detector
本文设计的人脸检测算法简称为 SSH,希望速度快,占用内存少,尺度不变性。它是一个单步骤检测器

3 Proposed Method
3.1. General Architecture
人脸检测--SSH: Single Stage Headless Face Detector_第2张图片
主要是在网络不同深度的卷积层进行人脸检测
SSH 对网络不同位置上,即不同尺度的特征图上接入了三个检测模块,检测模块由 a convolutional binary classifier and a regressor 构成

这里我们采用了类似 RPN 策略来构建 anchor set,采用滑动窗口的方式,每个位置定义具有不同尺度的 K 个 anchors,这里我们的长宽比是1。如果输入检测模块的特征图大小为 W×H, 那么一共有 W×H×K 个anchors

detection module
人脸检测--SSH: Single Stage Headless Face Detector_第3张图片

Context Module
incorporate context by enlarging the window around the candidate proposals,
SSH mimics this strategy by means of simple convolutional layers
人脸检测--SSH: Single Stage Headless Face Detector_第4张图片

Scale-Invariance Design
这里检测人脸 在网络的三个不同卷积层使用了 三个检测模块 M1,M2,M3, 这三个检测模块使用的步长分别为 8, 16,32 ,用于检测 大、中、小人脸

3.4. Training
不同尺寸的人脸对用不同的检测模块进行训练
3.4.1 Loss function
损失函数的定义

3.5. Online hard negative and positive mining
去除一些简单的负样本

4 Experiments

WIDER face detection benchmark
人脸检测--SSH: Single Stage Headless Face Detector_第5张图片

人脸检测--SSH: Single Stage Headless Face Detector_第6张图片

检测时间
人脸检测--SSH: Single Stage Headless Face Detector_第7张图片

输入图像尺寸的影响
人脸检测--SSH: Single Stage Headless Face Detector_第8张图片

11

你可能感兴趣的:(人脸检测识别)