利用word2vec对全网关键词进行聚类

http://blog.csdn.net/zhaoxinfan/article/details/11069485

继上次提取关键词之后,项目组长又要求我对关键词进行聚类。说实话,我不太明白对关键词聚类跟新闻推荐有什么联系,不过他说什么我照做就是了。

按照一般的思路,可以用新闻ID向量来表示某个关键词,这就像广告推荐系统里面用用户访问类别向量来表示用户一样,然后就可以用kmeans的方法进行聚类了。不过对于新闻来说存在一个问题,那就量太大,如果给你十万篇新闻,那每一个关键词将需要十万维的向量表示,随着新闻数迅速增加,那维度就更大了,这计算起来难度太大。于是,这个方法思路简单但是不可行。

好在我们有word2vec这个工具,这是google的一个开源工具,能够仅仅根据输入的词的集合计算出词与词直接的距离,既然距离知道了自然也就能聚类了,而且这个工具本身就自带了聚类功能,很是强大。下面正式介绍如何使用该工具进行词的分析,关键词分析和聚类自然也就包含其中了。word2vec官网地址看这里:https://code.google.com/p/word2vec/

1、寻找语料

要分析,第一步肯定是收集数据,这里不可能一下子就得到所有词的集合,最常见的方法是自己。。。。。。。。。。。。。。。。。。。。

你可能感兴趣的:(利用word2vec对全网关键词进行聚类)