【学习笔记】爬虫示例

爬虫示例

示例1:爬取图片

import os
import re
import requests
from tqdm import tqdm
from bs4 import BeautifulSoup


url = "http://www.xiachufang.com"
# 加上User-Agent,否则可能会接收到404
ua = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/64.0.3282.140 ' \
     'Safari/537.36 Edge/18.17763'
headers = {'User-Agent': ua}
r = requests.get(url, headers=headers)
soup = BeautifulSoup(r.text, 'html.parser')

# for i in soup.select('img'):
#     print(i.attrs['src'])  # 读取img标签的src属性
# 读出的结果含有
# 
# 这是一个动态加载,保存图片base64的字符串

img_list = []
for img in soup.select('img'):
    if img.has_attr('data-src'):
        img_list.append(img.attrs['data-src'])
    else:
        img_list.append(img.attrs['src'])

# for i in img_list:
#     print(i)

# 初始化下载目录
img_dir = os.path.join(os.curdir, 'images')
if not os.path.isdir(img_dir):
    os.mkdir(img_dir)

for img in tqdm(img_list):
    li = re.findall(r"^(http\S+/)(\w+\.(png|jpg|jpeg|bmp))", img)
    if li:
        filename = li[0][1]
        filepath = os.path.join(img_dir, filename)
        url_ = '%s%s' % (li[0][0], li[0][1])
        resp = requests.get(url_)
        with open(filepath, 'wb') as f:
            for chunk in resp.iter_content(1024):
                f.write(chunk)

# 正则表达式模式
# re*   匹配0个或多个的表达式。
# re+	匹配1个或多个的表达式。
# a| b	匹配a或b
# \w	匹配字母数字及下划线
# \W	匹配非字母数字及下划线
# \s	匹配任意空白字符,等价于 [\t\n\r\f].
# \S	匹配任意非空字符
# \d	匹配任意数字,等价于 [0-9].
# \D	匹配任意非数字

示例2:爬取链接和表格信息

import requests
from lxml import etree


def not_empty(str):
    return str and str.strip()


def space_filter_and_join(li):
    return ''.join(list(filter(not_empty, li)))


def fetch(url):
    """请求并下载网页"""
    r = requests.get(url)
    if r.status_code != 200:
        r.raise_for_status()
    return r.text


def parse_university(url):
    """
    处理大学详情页面
    :param url: 网页链接
    :return: 表格数据
    """
    s = etree.HTML(fetch(url))
    data = dict()
    data['name'] = s.xpath('//div[@id="wikiContent"]/h1/text()')[0]
    table = s.xpath('//div[@id="wikiContent"]/div[@class="infobox"]/table')
    if table:
        table = table[0]
        col1 = table.xpath('.//td[1]')
        col2 = table.xpath('.//td[2]')
        keys, values = [[space_filter_and_join(col.xpath('.//text()')) for col in cols] for cols in (col1, col2)]
        if len(keys) != len(values):
            return None
        data.update(zip(keys, values))
    return data


def process_data(data):
    if data:
        print(data)


if __name__ == '__main__':
    # 请求入口页面
    selector = etree.HTML(fetch('http://www.qianmu.org/ranking/1528.htm'))
    # 提取列表界面的链接
    links = selector.xpath('//div[@class="rankItem"]//tr[position()>1]/td/a/@href')
    for link in links:
        if not link.startswith('http://www.qianmu.org'):
            continue
        # 提取详情页的信息
        data = parse_university(link)
        # 处理数据
        process_data(data)

示例3:多线程处理数据

import time
import requests
import threading
from queue import Queue
from lxml import etree

link_queue = Queue()  # 队列存储链接
threads_num = 10
pages_num = 0
threads = []
THREAD_ON = True


def not_empty(str):
    return str and str.strip()


def space_filter_and_join(li):
    return ''.join(list(filter(not_empty, li)))


def fetch(url):
    """请求并下载网页"""
    r = requests.get(url)
    if r.status_code != 200:
        r.raise_for_status()
    global pages_num
    pages_num += 1
    return r.text


def parse_university(url):
    """
    处理大学详情页面
    :param url: 网页链接
    :return: 表格数据
    """
    s = etree.HTML(fetch(url))
    data = dict()
    data['name'] = s.xpath('//div[@id="wikiContent"]/h1/text()')[0]
    table = s.xpath('//div[@id="wikiContent"]/div[@class="infobox"]/table')
    if table:
        table = table[0]
        col1 = table.xpath('.//td[1]')
        col2 = table.xpath('.//td[2]')
        keys, values = [[space_filter_and_join(col.xpath('.//text()')) for col in cols] for cols in (col1, col2)]
        if len(keys) != len(values):
            return None
        data.update(zip(keys, values))
    return data


def process_data(data):
    if data:
        print(data)


def download():
    while THREAD_ON:
        link = link_queue.get()
        data = parse_university(link)
        process_data(data)
        link_queue.task_done()
        print('Remaining queue: %d' % link_queue.qsize())
        if not link_queue.qsize():
            break
    print('--> {}退出'.format(threading.current_thread().name))


if __name__ == '__main__':
    start_time = time.time()
    # 请求入口页面
    selector = etree.HTML(fetch('http://www.qianmu.org/ranking/1528.htm'))
    # 提取列表界面的链接
    links = selector.xpath('//div[@class="rankItem"]//tr[position()>1]/td/a/@href')
    for link in links:
        if not link.startswith('http://www.qianmu.org'):
            continue
        link_queue.put(link)

    # 启动线程,并将线程对象放入一个列表保存
    for k in range(threads_num):
        t = threading.Thread(target=download, name='线程%d' % k)
        t.start()
        threads.append(t)
    link_queue.join()  # 阻塞队列,直到队列被清空
    THREAD_ON = False

    for t in threads:
        t.join()  # 退出线程

    cost_time = time.time() - start_time
    print('Download {} pages, cost {} seconds'.format(pages_num, cost_time))

示例4:分布式处理数据

import sys
import time
import redis
import requests
import threading
from lxml import etree

threads_num = 10
pages_num = 0
threads = []
red = redis.Redis()
THREAD_ON = True


def not_empty(str):
    return str and str.strip()


def space_filter_and_join(li):
    return ''.join(list(filter(not_empty, li)))


def fetch(url):
    """请求并下载网页"""
    r = requests.get(url)
    if r.status_code != 200:
        r.raise_for_status()
    global pages_num
    pages_num += 1
    return r.text


def parse_university(url):
    """
    处理大学详情页面
    :param url: 网页链接
    :return: 表格数据
    """
    s = etree.HTML(fetch(url))
    data = dict()
    data['name'] = s.xpath('//div[@id="wikiContent"]/h1/text()')[0]
    table = s.xpath('//div[@id="wikiContent"]/div[@class="infobox"]/table')
    if table:
        table = table[0]
        col1 = table.xpath('.//td[1]')
        col2 = table.xpath('.//td[2]')
        keys, values = [[space_filter_and_join(col.xpath('.//text()')) for col in cols] for cols in (col1, col2)]
        if len(keys) != len(values):
            return None
        data.update(zip(keys, values))
    return data


def process_data(data):
    if data:
        print(data)


def download():
    while THREAD_ON:
        link = red.lpop('queue')
        if link:
            data = parse_university(link)
            process_data(data)
            print('Remaining queue: %d' % red.llen('queue'))
        else:
            break
    print('--> {}退出'.format(threading.current_thread().name))


if __name__ == '__main__':
    start_time = time.time()
    if len(sys.argv) > 1:
        # python use_redis.py 'http://www.qianmu.org/ranking/1528.htm'
        start_url = sys.argv[1]
        # 请求入口页面
        selector = etree.HTML(fetch(start_url))
        # 提取列表界面的链接
        links = selector.xpath('//div[@class="rankItem"]//tr[position()>1]/td/a/@href')
        for link in links[:30]:
            if not link.startswith('http://www.qianmu.org'):
                continue
            if red.sadd('seen', link):
                red.rpush('queue', link)
    else:
        # 启动线程,并将线程对象放入一个列表保存
        for k in range(threads_num):
            t = threading.Thread(target=download, name='线程%d' % k)
            t.start()
            threads.append(t)

        for t in threads:
            t.join()  # 退出线程

        red.delete('queue')
    red.delete('seen')

    cost_time = time.time() - start_time
    print('Download {} pages, cost {} seconds'.format(pages_num, cost_time))

你可能感兴趣的:(爬虫)