- 点云配准技术的演进与前沿探索:从传统算法到深度学习融合(1)
点云SLAM
点云数据处理技术算法深度学习点云数据处理点云配准刚体变换
1、点云配准的基础理论1.1点云数据的特性与获取点云数据是一种通过大量离散的三维坐标点来精确表示物体或场景表面几何形状和空间位置关系的数字化信息表达方式。在实际应用中,点云数据展现出诸多独特的特性。从表达形式来看,点云数据能够直观地呈现出物体或场景的三维结构,每个点都包含了其在空间中的X、Y、Z坐标信息,这使得点云数据可以精确地描述物体表面的形状和位置。例如,在对古建筑进行三维建模时,通过点云数据
- 127.0.0.1 与 localhost 有什么区别
.猫的树
java网络安全网络协议
文章目录引言:被忽视的基础知识陷阱一、基础概念深度解析1.1网络协议栈视角1.2技术定义对比二、核心差异全景分析2.1操作系统实现差异2.2网络编程中的行为差异三、六大关键使用场景3.1Web开发调试3.2容器化环境3.3安全策略配置四、常见问题与解决方案4.1连接拒绝问题分析4.2IPv6兼容性问题五、底层原理深度剖析5.1数据包流向对比5.2性能基准测试六、最佳实践指南6.1开发环境推荐配置6
- 手把手教你如何使用java开发人脸识别及人脸比对(附源码)
java人脸识别后端深度学习
痛点目前,常用的人脸识别算法大多基于Python开发,因为Python对深度学习框架的支持较好,且许多优秀的人脸识别算法都是在深度学习框架下实现的。然而,对于Java开发者来说,这种情况并不十分友好。传统上,Java开发的人脸识别算法主要依赖OpenCV,但与基于深度学习的算法相比,OpenCV的精度相对较低。此外,若Java开发者希望使用Python实现的算法,还需要安装Python环境,并且熟
- 书籍-《在AWS上构建可扩展的深度学习Pipeline》
深度学习机器学习人工智能
书籍:BuildingScalableDeepLearningPipelinesonAWS:Develop,Train,andDeployDeepLearningModels作者:AbdelazizTestas出版:Apress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《在AWS上构建可扩展的深度学习Pipeline》01书籍介绍本书是您在亚马逊网络服务(AWS)上创建强大且端到端深度学
- 聊一聊提升测试用例覆盖率需要从哪几方面入手?
Feng.Lee
漫谈测试测试用例服务器运维
目录一、需求覆盖:确保无遗漏二、代码覆盖:工具辅助优化三、路径覆盖:逻辑深度遍历四、边界值覆盖:防御性测试设计五、异常场景覆盖:模拟真实故障六、兼容性覆盖:全环境验证七、性能覆盖:压力与稳定性八、历史缺陷覆盖:经验驱动九、测试数据覆盖:多样性输入十、自动化覆盖:高效执行十一、评审与优化:持续改进十二、工具与技术创新十三、风险驱动测试:聚焦关键点十四、持续追踪与反馈提升测试用例的覆盖率,可以从测试用
- GraphQL工具怎么选?深度解析Apipost在文档自动化与错误定位上如何碾压Apifox
作为一个十年在一线的全栈开发者,对于GraphQL带来的效率变革已深刻体验到,据我了解,身边超过40%的同行都已采用这项技术。但在开发过程中,我和团队经常遇到如下类似问题:手工编写复杂Query时频繁出错、调试过程像在黑暗里摸索、文档维护总比代码慢半拍...直到我们启用了Apipost,这款工具彻底改变了我们的工作流。一、我的调试效率进化史1、可视化界面记得第一次接触GraphQL时,需要反复核对
- 支持 40+ 插件,Spring AI Alibaba 简化智能体私有数据集成
云原生
作者:张震霆&何裕墙,SpringAIAlibabaContributor在AI智能体(AIAgent)开发的过程中,RAG(Retrieval-AugmentedGeneration)和ToolCalling已经成为两种至关重要的模式。RAG通过结合检索技术和生成模型的强大能力,使智能体能够实时从外部数据源获取信息,并在生成过程中增强其知识深度和推理能力。通过这种方式,智能体不仅能依赖于模型的预
- DeepSeep开源周,第三天:DeepGEMM是啥?
程序员差不多先生
pytorch
DeepGEMM是Deepseek开源的一个高性能矩阵乘法优化库,专为深度学习场景设计。矩阵乘法(GEMM)是深度学习模型的核心运算(如全连接层、卷积层等),其性能直接影响训练和推理效率。DeepGEMM通过算法优化、硬件指令集加速和并行计算技术,显著提升计算速度,适用于GPU、CPU等硬件平台。对开发者的用处性能提升优化计算密集型任务(如LLM训练/推理),降低延迟,提升吞吐量。支持混合精度计算
- 中服云工业物联网平台产品特色
人工智能深度学习
在工业领域数字化转型的浪潮中,中服云工业物联网平台凭借其卓越性能与创新功能脱颖而出,成为众多企业实现智能化升级的得力助手。它深度融合前沿技术,致力于打破传统工业运营的壁垒,为企业构建高效、智能且安全的数字化智能化底座。以下是中服云工业物联网平台的特色。中服云工业物联网平台具有以下特色:一、强大的设备接入能力:支持RS232、RS485、ModbusTCP等几乎所有主流工业通信协议,支持传感器数据、
- 深度分页实践
YMY-up
项目实践数据分页
深度分页:查询偏移量过大的场景,这会导致查询性能较低#MySQL在无法利用索引的情况下跳过1000000条记录后,再获取10条记录SELECT*FROMt_orderORDERBYidLIMIT1000000,10优化方案:范围查询当可以保证ID的连续性时,用户根据ID范围进行分页是比较好的解决方案:SELECT*FROMt_orderWHEREid>100000ANDid100000LIMIT1
- ChatGPT版本差异分析大全
爱吃青菜的大力水手
chatgpt人工智能
1.核心功能差异多模态支持:GPT-4o支持文本、图像和音频的多模态输入与处理,适合需要结合多种媒体形式的任务(如设计、多媒体内容生成)。o1系列(o1-preview/o1-mini)仅支持纯文本处理,但专注于深度推理和分析。GPT-3.5是早期版本,仅支持文本,且性能和上下文理解能力较弱。2.推理与准确性o1系列在复杂推理任务中表现卓越:通过CoT(链式推理)技术分解复杂问题,在医学临床案例测
- 破局者DeepSeek:从技术追赶到全球领跑的三大颠覆密码
未来智慧谷
人工智能
2025开年之际,DeepSeek这款中国AI大模型不仅登上全球权威评测榜首,更引发硅谷科技巨头的战略级关注。本期我们将深度解码揭开其现象级爆发背后的硬核逻辑——技术突围、成本革命与极客生态的三角共振。一、技术突围:架构级创新打破算力囚笼DeepSeek的爆发绝非营销奇迹,而是一场蓄谋已久的技术革命。自2024年5月发布DeepSeek-V2引发行业震动以来,其技术路线始终贯彻着「以算法革命对冲算
- 当AI搜索撕开传统搜索的裂缝,警惕AI搜索的“信息茧房”
shelly聊AI
AI核心技术AI行业趋势人工智能
大家好,我是Shelly,一个专注于输出AI工具和科技前沿内容的AI应用教练,体验过300+款以上的AI应用工具。关注科技及大模型领域对社会的影响10年+。关注我一起驾驭AI工具,拥抱AI时代的到来。人工智能&AIGC术语100条Shelly聊AI-重磅发布Shelly聊AI:年度展望:2025年AI与社会发展关键事件的深度思考(每年一篇,十年为期)数字世界正在经历一场无声的地震,谷歌工程师发现,
- 从零开始 CMake 学习笔记 (A)hello-cmake
OOOrchid
混合计算c++cmake
从零开始CMake学习笔记(A)hello-cmake最近基于Caffe2C++项目开发算子时,接触到了C++,查找的资料基本又杂又多,官方文档又缺少自己动手的小实验,因此有必要跟着github上的案例学习学习,顺带记录下自己的学习笔记留待后用。定义:CMake可以编译源代码、制作程序库、产生适配器(wrapper)、还可以用任意的顺序建构执行档。CMake支持in-place建构(二进档和源代码
- 用 ActionNode 重构技术文档助手:从原理到实践的深度解析
海棠AI实验室
智元启示录重构ActionNodeMetaGPT人工智能AIagent
目录什么是ActionNode?为什么用ActionNode重构技术文档助手?系统架构:从多智能体到ActionNode示例代码实现:技术文档助手中的ActionNode总结在数字化时代,技术文档的重要性日益凸显。一份清晰、准确的文档不仅能帮助用户快速上手,还能提升产品的专业形象。然而,撰写高质量的技术文档往往耗时费力。近年来,随着人工智能技术的飞速发展,自动生成技术文档成为可能。MetaGPT框
- mapper配置文件中非空判断的重要性
fan510988896
JAVAmapper非空判断
比如下面的:ANDperson.name=#{name}场景:我一个编辑页面,它的4个框内容都是从后台获取的。用户可能只修改其中一个值,然后提交。这时候,提交的还是四个值。但是:在单元测试中,我只设置一个值,然后测试修改的映射。这时候就出问题了,它会认为你其他三个是空值(null或者'')导致数据丢失我去mapper查看后才发现,是缺少了name!=''样式的判断。也就是说,在mapper中操作数
- 电商 API 接口采集原理深度解析
数据捕手19970108018
爬虫技能晋升路线数据库
一、引言在当今数字化商业时代,电商行业蓬勃发展,数据成为驱动业务决策的核心资产。电商API(ApplicationProgrammingInterface,应用程序编程接口)接口采集作为获取电商数据的重要方式,扮演着关键角色。无论是电商平台自身的数据分析、商家对市场动态的洞察,还是第三方开发者构建创新应用,都依赖于从电商API接口采集准确、及时的数据。深入理解电商API接口采集原理,对于有效利用这
- 人工智能在fpga的具体应用_FPGA创意人工智能研发 校企合作培养专业人才
墨墨猪
人工智能在fpga的具体应用
FPGA英特尔®FPGA与人工智能技术培训——成都信息工程大学站人工智能在21世纪初迎来以深度学习与大数据云计算为主导的第三次浪潮,在无人驾驶、医疗保健、工业等多个领域得到广泛应用。随着人工智能理论和技术日益成熟,FPGA在人工智能方面的应用也越来越多,特别对于需要分析大量数据的AI、大数据以及机器学习等研究领域。人工智能与FPGA的灵活应用,对人工智能专业人才培养提出了更高要求。英特尔®FPGA
- 正则化技术和模型融合等方法提高模型的泛化能力
小赖同学啊
人工智能人工智能
在机器学习和深度学习中,提高模型的泛化能力至关重要,正则化技术和模型融合是两种有效的手段,以下将详细介绍它们的原理、常见方法及代码示例。正则化技术原理正则化是通过在损失函数中添加一个正则化项,来限制模型的复杂度,防止模型过拟合训练数据,从而提高模型在未见过数据上的泛化能力。正则化项通常与模型的参数相关,通过惩罚过大的参数值,使模型更加平滑和简单。常见方法L1正则化(Lasso正则化)原理:在损失函
- 深度学习笔记线性代数方面,记录一些每日学习到的知识
肆——
人工智能深度学习python
记录一些每日学习到的新知识:torch:Torch是一个有大量机器学习算法支持的科学计算框架,是一个与Numpy类似的张量(Tensor)操作库jupyter:JupyterNotebook的本质是一个Web应用程序,便于创建和共享程序文档,支持实时代码,数学方程,可视化和markdown。用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等。只有一个轴的张量,形状只有一个元素torch.a
- AI 在未来相机领域的应用前景如何?
程序员Android
人工智能数码相机智能电视
和你一起终身学习,这里是程序员Android人工智能(AI)在手机相机领域的应用已成为近年来技术创新的核心驱动力之一。随着计算摄影、深度学习算法和硬件加速技术的进步,AI正在重新定义手机摄影的可能性,并为未来带来更多颠覆性潜力。以下是AI在手机相机中的关键潜力方向及具体应用场景:经典好文推荐,通过阅读本文,您将收获以下知识点:1.计算摄影的深度进化多帧合成与超分辨率:AI通过分析多张连续拍摄的帧(
- 云平台结合DeepSeek的AI模型优化实践:技术突破与应用革新
荣华富贵8
程序员的知识储备1经验分享
云平台与AI模型的深度结合已成为推动人工智能技术落地的重要驱动力。DeepSeek(深度求索)作为前沿AI模型的代表,通过与云计算的深度融合,在技术架构和应用场景层面实现了突破性进展。以下从技术突破和应用革新两个维度进行系统解析:---###**一、技术突破:云原生AI架构的进化**####1.**弹性算力调度体系**-**动态资源分配**:基于Kubernetes的智能调度器实现GPU资源的细粒
- DeepSeek:通用人工智能的探路者与技术革新者——从技术架构到应用生态的全方位解析
sanggou
人工智能架构
一、DeepSeek的发展历程:中国AGI先锋的崛起DeepSeek(深度求索)成立于2023年,是中国人工智能领域的一颗新星。尽管成立时间较短,但其发展速度与技术突破令人瞩目:2023年:公司成立,核心团队由来自全球顶尖高校(如MIT、斯坦福)和科技企业(如GoogleBrain、OpenAI)的AI科学家组成,专注于AGI(通用人工智能)技术的研发。2024年初:推出首个公开产品DeepSee
- DeepSeek颠覆传统教育:揭秘AI作业批改如何实现秒级反馈与精准提升
Coderabo
DeepSeekR1模型企业级应用人工智能
DeepSeek智能教育新突破:基于深度学习的作业批改与个性化反馈系统详解一、研究背景与意义在教育数字化转型的浪潮中,DeepSeek研发团队基于自研大语言模型,构建了新一代智能作业批改系统。该系统通过深度学习技术实现作业的自动化评分与个性化反馈,有效解决了传统教育中教师工作负荷大、反馈周期长、个性化不足等痛点。二、系统架构设计核心模块组成文本预处理模块深度学习评分引擎错误模式识别模块个性化反馈生
- DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)
一个处女座的程序猿
精选(人工智能)-中级深度学习人工智能tensorflow
DL之IDE:深度学习环境安装之Tensorflow/tensorflow_gpu+Cuda+Cudnn(最清楚/最快捷)之详细攻略(图文教程)导读本人在Win10下安装深度学习框架Tensorflow,安装之前各种谷歌,各种百度,各种国内外资料,做了充分准备。目录安装思路1、tensorflow_gpu+Cuda+Cudnn版本匹配官方推荐2、先解释一下cuda与cudannDL之IDE:深度学
- 深度求索DeepSeek:AI大模型的全域应用与技术突破
量子纠缠BUG
DeepSeek部署DeepSeekAI人工智能easyui前端
——从政务到医疗,解析国产大模型的创新实践与未来图景引言:DeepSeek的技术定位与行业价值DeepSeek(深度求索)作为中国AI领域的新锐力量,凭借"低成本、高精度、强场景适配"的差异化优势,在短短两年内实现了从技术研发到行业落地的跨越式发展。其基于DeepSeek-R1系列大模型的创新架构,以600万美元的超低训练成本(仅为OpenAI同类模型的1/30)3,在自然语言处理、逻辑推理、多模
- 揭秘短视频矩阵账号系统开发逻辑
VV:zuihaodeanpai0108
人工智能java大数据前端框架数据结构矩阵
在构建短视频账号矩阵系统的过程中,遵循以下专业逻辑:数据库架构规划:设计一个高效的数据库系统来管理抖音账户的关键数据,包括用户ID、账户名、粉丝数量、视频发布量、互动数据(如赞数、评论、分享和转发次数)。数据采集流程:利用抖音提供的API接口收集所需数据,确保获取到的每项指标均准确无误。数据分析与处理:对采集的数据进行清洗、整合,并执行深度分析。例如,评估每个账号的影响力指数,识别其关注者群体特征
- DeepSeek:大模型时代的“破局者”
qq_44233281
ai深度学习人工智能
DeepSeek,是谁?DeepSeek,中文名深度求索,是一家成立于2023年7月17日的创新型科技公司,由知名量化资管巨头幻方量化创立,法定代表人系裴湉。公司专注于开发先进的大语言模型(LLM)和相关技术,致力于在人工智能领域实现技术突破和创新应用。在成立后的短时间内,DeepSeek取得了令人瞩目的成绩。2024年1月5日,发布首个包含670亿参数的大模型DeepSeekLLM,该模型从零开
- 深度学习-133-LangGraph之应用实例(二)使用面向过程和面向对象的两种编程方式构建带记忆的聊天机器人
皮皮冰燃
深度学习深度学习人工智能LangGraph
文章目录1通用配置1.1大语言模型ChatOllama1.2函数trim_messages1.2.1函数概述1.2.2函数参数1.2.3测试应用2面向过程编程2.1不裁剪历史信息2.1.1创建图2.1.2调用图2.2裁剪历史信息2.2.1创建图2.2.2调用图3面向对象编程3.1定义类MyState3.2定义类AIChat3.3应用4附录4.1问题及解决tokenizer4.2参考附录1通用配置L
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比