人工智能那么火~如今AI的应用场景都有哪些?

作者:新智元
链接:https://www.zhihu.com/question/282715644/answer/1329782546
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

【未来5年AI应用报告】谷歌、DeepMind、英伟达科学家支招企业AI应用

ReWork的一份最新AI落地应用报告,阐述了企业该如何使用AI技术。谷歌的Ian GoodFellow、DeepMind的 Jörg Bornschien、英伟达的Kimberly Powell等知名AI研究员参与了这一份AI报告的访谈并发表观点。受访者认为,在接下来的几十年,深度学习模型的大小将呈指数级增长,我们将找到越来越好的神经网络架构和参数,达到甚至超越人类水平。

报告全文:

http://reworkco.domain.com/WhitePaperShouldYouBeUsingAIInYourBusiness.pdf​reworkco.domain.com

 

人工智能(AI)正在变革它能触及的各行各业,从医疗保健到零售和广告,金融,交通,教育,农业等等。 AI的目的是什么?接手所有需要员工手动完成的工作,让他们腾出时间更有创意地完成机器不能做的工作。如今,快速发展的 AI 技术主要由大型企业通过机器学习和预测分析来使用。

人工智能不是一项未来的技术,现在当下的技术,没有采用的公司将被抛在后面。

本文将探讨人工智能在商业领域的应用,深入研究谁应该使用这些技术,并深入研究人工智能在各个行业的领军人物的研究贡献。包括来自学者,行业领导者,研究人员,首席执行官,创始人等等的专家意见,以评估人工智能对多个行业的影响。

受访者单位(具体名单):

人工智能那么火~如今AI的应用场景都有哪些?_第1张图片

人工智能那么火~如今AI的应用场景都有哪些?_第2张图片

人工智能那么火~如今AI的应用场景都有哪些?_第3张图片

人工智能那么火~如今AI的应用场景都有哪些?_第4张图片

包括谷歌的Ian GoodFellow、DeepMind的 Jörg Bornschien、英伟达的Kimberly Powell等知名AI研究员参与了这一份AI报告的访谈并发表观点。

AI 快速增长的背后:技术、资本、企业

人工智能正在颠覆和改变它所触及的每一个行业。从商业运营和效率到创新的客户服务方式、医学研究的突破、更智能的交通系统和更有针对性的广告活动,这是当今世界不可避免的现实。不愿意采用AI的企业将落后,预计AI软件的直接和间接应用产生的收入将从2016年的13.8亿美元增长到2025年的597.5亿美元。(Tractica,2017)

“随着机器变得越来越智能,消费者将会期待24小时内的完美服务,到2025年,AI将会占到所有客户互动的95%,消费者在在线聊天或电话中将无法区分机器人和人类员工。”(Servion,2017)

得益于海量数据和日益智能化的算法,机器可以学习、说话、做出明智的决策,并以一种越来越有效的方式执行复杂的任务。这不仅推动了研究上的突破,而且在业界的实施也证明了AI在现实世界中的应用可能对各行各业的企业产生巨大的潜在影响,包括零售和广告、医疗保健、销售和市场营销、交通运输、旅游等。

人工智能那么火~如今AI的应用场景都有哪些?_第5张图片

图:AI的全球预计收入:2016-2025

是什么令AI的进步如此迅速?

AI需要庞大的数据集,而“真正伟大的科学与技术的惊人进步使我们能够收集到前所未有的数据”,从而使模型能够更快地学习。(Jasper Snoek,谷歌大脑)

目前的发展速度并没有被预见,比如OpenAI的Ankur Handa,并没有预见到在多伦多大学Geoffrey Hinton的研究团队发表第一篇卷积神经网络的论文之后,短短三年的时间里,CNN在ImageNet竞赛中实现了“超越人类的表现”。虽然这些进展迅速而且有影响力,但你的业务是否应该采用AI,这是需要考虑的。诸如成本、可用数据、行业相关性和人员配置,以及可能的ROI等因素是所有规模的企业需要考虑的因素。本报告后面的章节将为这些关键因素提供解决方案,以发现AI在行业中的影响,以及你是否应该在你的业务中使用这些技术。

谁在推动AI的发展?

不仅仅是科技巨头在引领了AI竞赛,还包括大学、风险资本家(VC)和内部研究人员。机构和行业专家的研究为企业将这些模型应用于他们的工作打开了大门,而针对AI的风投正在通过他们的资金来帮助研究取得突破。

下图:著名AI风投、学术机构和公司

人工智能那么火~如今AI的应用场景都有哪些?_第6张图片

AI的生态图景:模型、训练数据、硬件和人员

目前AI的生态图景四个方面:模型、训练数据、硬件和人员。新的模型(如生成对抗网络)正被广泛应用,并取得了巨大的成功;更大的数据集可以用来训练模型;硬件的改进加快了训练的速度;而且,这个领域的每一次成功都会吸引更多的人进入这个行业。(Ed Newton-Rex Jukedeck)

进步是持续的,但是对社会产生直接的影响需要时间和金钱来进行研究。数据的可用性、计算的能力、每个模型的训练周期和智能水平都有局限性。无监督学习的进步正在彻底改变商业应用程序,节省时间和金钱——2010年至2014年间,全球对人工智能技术的投资从17亿美元增长至149亿美元(Merrill Lynch,Bank of America,2016)。

虽然AI不是一个新的概念,但它变得主流的过程也已经花费了数年的时间,近几十年的发展速度是最快的。这意味着,由于我们目前使用arXiv和社交媒体进行传播的文化,新的进步很快就会过时。AI的“过度活跃”可能是破坏性的,这迫使企业重新考虑他们正在设计的产品(Hugo Larochelle,Google Brain)。

AI的发展带来了今天的模型:研究人员发现如何使用GPU来加速神经网络的训练。这些方法使得模型能够扩展到更大的数据集,并在对更小、更学术的数据集进行研究时实现更快的迭代。

DL社区开发了更好的开源库和用于深度学习的工具。例如,Theano在如何实现DL模型方面取得了突破,这启发了现在广泛流行的TensorFlow。

ArXiv和社交媒体已经成为宣传研究的主要真滴。这使得我们可以更快地迭代和构建其他研究人员的工作。(Hugo Larochelle, Google Brain)

如何在商业中应用这些进步?

ML总是受限于可使用的计算量。这些进步能够对现实世界的问题产生非常明显的影响,正如Ian Goodfellow说:

“2017年5月谷歌发布新一代TPU,这是一个大消息。新的谷歌TPU可以帮助缩小在DL实验中可利用的计算量和在生物神经系统中使用的计算量之间的差距。第一代TPU只对谷歌的工程师开放,而新一代TPU将对谷歌云的用户开放,并且研究人员可以申请免费获取。”

人工智能那么火~如今AI的应用场景都有哪些?_第7张图片

领先的AI使用案例,数据分析仍然是最大的场景,其次是销售,再到医疗

随着越来越多的公司(例如谷歌,亚马逊,微软)通过云平台在业务中使用人工智能模型,人工智能技术将持续被工业界和整个社会所接受。没有任何行业会被抛在后面,所有行业都被人工智能的进步所打破(Hugo Larochelle,Google Brain)。商业智能工具能够搜集、分析、转换和报告数据,从而提供有价值的洞察,并使企业将时间和金钱投入到正确的领域。那些努力与用户建立情感联系的公司将通过“有感情的AI”来提高客户满意度,毕竟,在现实生活中,人们的情商很糟糕,导致一系列无用的争端。当AI不受偏见影响的情况下接受训练,它能够提供比人类更合理的反应(Mikko Alasaarela,Inbot,2017年10月)

由于深度学习在数据准备、语音识别、文本理解、电脑游戏,网络安全等方面的应用,我们看到很多令人难以置信的结果。深度学习提供了人工智能历史上最大的性能飞跃(甚至可以说,计算机科学史),并使许多传统方法成为过去时。因此,在未来十年内,任何一个没有依赖深度学习的公司都将被抛在后面(Deep Instinct首席技术官Eli David)。

人工智能那么火~如今AI的应用场景都有哪些?_第8张图片

人工智能那么火~如今AI的应用场景都有哪些?_第9张图片

不仅科技公司能用AI,其他行业也将大量使用这种技术。以下是一些预测数据:

20%的商业内容将由AI生产。(Salesforce, 2017)

  • 57%的用户期望2020年前,智能语音助手能在生活中发挥重要作用。(Salesforce, 2017)
  • 鉴于亚马逊、Alphabet、IBM、微软在云计算的地位,下个十年之处,60%的AI 平台将被上述公司掌控。(IDC FutureScape, 2017)
  • 2018年前,75%的开发者团队将把AI 运用在一个或多个商业应用或服务上。(IDC FutureScape, 2017)
  • 2020年前,80%的客户服务将不需要人类介入。(Salesforce, 2017)

进程

关于AI“抢夺人类工作”的讨论很多,但这并不是第一次。在工业革命时期,机器使得工厂工人失业;互联网飞速发展,颠覆了各行各业。然而,这并不是行业的终点:工人学会了操作机器;记者利用互联网作为资源,而非阻碍。一个工作被摧毁了,无数的新机会被创造出来。 (福布斯,2017年)

Hugo Larochelle解释说,虽然我们无法确定AI和经济的未来, 历史上有一些旨在取代人类的技术发展的例子,但该行业的就业反而增长了。

对于一些高度依赖劳动力的行业来说,人工智能可能比人类更好。由于人工智能永远不会感到厌倦而且几乎不会犯错误,所以这将创造出研发机器的新职位。然而,需要更多人类智慧和情感的行业不可能完全被AI所改变。AI助手帮助人们节省了时间,也帮助我们做了更多聪明的工作。 (雅虎实验室研究科学家Miao Lu)。

人工智能那么火~如今AI的应用场景都有哪些?_第10张图片

 

人工智能现在远比之前更容易获得,即使对于计算机科学和人工智能领域以外的人也是如此,正如Hugo Larochelle所强调的那样,人工智能云平台提高了可访问性。对于高校来说,迎接人工智能的进步,停止只把它作为计算机科学研究生学习的一个狭窄的话题是非常重要的。

人工智能那么火~如今AI的应用场景都有哪些?_第11张图片

历史上,AI都是大公司在进行开发,因为要想从AI和ML中获得回报,需要大量的训练数据。

对于公司来说,获取这些数据意味着企业需要有一个既有的,成熟的产品,有很能吸引用户的地方,或者公司需要高额的财务支撑来购买交换的数据。今天,通过scale.api和亚马逊Mechanical Turk等平台将人类注释数据与成初创公司的需求相匹配,获取培训数据的成本大大降低。此外,许多平台即服务系统直接提供机器学习模型来输入数据集,如Amazon ML和Azure ML,可以帮助 AI / ML领域的创业公司启动。 (思科Vijay Ramakrishnan)

在GPU(和TPU)的帮助下,AI的计算能力变得非常之快,我们都知道,速度意味着生产力。生产力最终带来的是性能的改善。在速度之外,我们其性能的良好并且具有广泛的适用性。(Kimberly Powell, NVIDIA)

AI 能够让研究员聚焦于眼前的问题,而不需要花费大量的时间来创造新的工具解决新的问题。(Ian Goodfellow, Google Brain)

随着消费者在生活中需要更多的个性化和个性化定制,个人助理将迎合特定的品牌和需求,消费者将越来越期望迎合他们喜好的产品。(Kimberly Powell, NVIDIA)。企业不得不达到这样的期望,如果仅仅依靠人类劳动力,很快遇到天花板,增长将停滞。

考虑你的公司提供的服务和你目前遇到的挑战,无论他们是投资回报率,组织,效率,准确性,客户服务还是业务的其他方面。想一想AI可能产生的影响,不仅有你的日常活动,还有你公司的整体成功。

人工智能那么火~如今AI的应用场景都有哪些?_第12张图片

五年前,我曾和一个领导世界领先的计算机视觉小组的朋友交谈。在讨论深度学习时,他将其称为“另一种短暂的炒作”。今天,他的整个研究小组只关注深度学习,获得了惊人的突破,几乎没有使用过去几十年来其他任何传统图像处理方法。我认为,未来每一个行业的每一个领先企业在未来几年都会深深地依赖于深入的学习(否则就完全落伍了)。

虽然采纳AI的公司中,明显有力竞争者是“科技公司”,跨行业企业如果成功采用AI 技术,也可以看到以前使用的模型无法比拟的优势。由于需要大量标签化的数据,较小型的公司可能不敢投资长期的人工智能战略。许多企业无法拥有数据,但这并不是说建立一个成功的战略是不可能或不可取的。

目前从人工智能中受益的公司是那些已经拥有现有存档数据的公司,例如像互联网公司、获取增量数据成本较低的医院或企业。然而,收集训练数据或开发ML模型所需的时间正在减少。另外,Amazon AWS和Google Cloud ML等云基础架构服务减少了前期购买昂贵基础设施的需求,从而减少了中小型企业进入这一领域的障碍。 (思科Vijay Ramakrishnan)

业务优化

以前需要人工的任务,比如客户服务、数据管理、供应链管理和市场策略决策,都被预测将在未来5年由AI实现自动化(福布斯,2017)。很少有公司在这几个领域不依赖大量人力,但这样做开支巨大,因此使用AI模型是显而易见的。但是,引入技术很简单,但是优化提高效率让员工从好变到更好,需要靠优化(Ankur Handa,OpenAI)

在受访的200多家企业中,75%的表示将在接下来3年“积极部署”AI。全球接受调查的高管中,79%表示AI将让他们的工作变得更加简单高效。

健康医疗

在医疗领域AI的采用率正在上升,不仅仅帮助医生诊断,在新药发现和研究方面也有辅助作用。深度学习方法已经帮助分析师,在检测糖尿病眼睛疾病和癌症等特定场景下超越了人类医生。这些进展并不会取代人类医生和医疗专家,而是辅助他们让他们将更多时间用于攻克更棘手的问题,同时帮助降低错误率(Jasper Snoek,谷歌大脑)。例如,在美国,平均1万人有1名放射科医生,而在印度,就是平均10万人才有1名放射科医生。有了AI后,放射科医生将更加高效的工作,将精力集中在困难病例上(Kimberly Powell,英伟达)。Jasper Snoek预计,AI在心血管疾病领域也将得到应用,算法可以分析患者自己在家拍摄的EKG。

在医疗领域,DeepMind与NHS合作,开发机器学习系统识别眼盲症。Springer Nature报道,研究人员已经开发出“皮肤科医生水平”的皮肤癌分类神经网络。IBM Watson给出的医疗建议,99%的情况下与医生的建议相符合。

未来5年会发生什么?

Eli David,Deep Instinct:第一波最初的工作消失了,同时很多新的动作被创造出来,人类不再与AI竞争,而是与AI一同工作,完成如今完成不了的复杂工作

Raquel Urtasun,Uber ATG:因为有了AI,我认为未来会减少交通拥堵,出行不便的人更容易出行,城市绿化增加,公共交通的可用性也有所提高

Ankur Handa,OpenAI:我认为健康医疗、公共部门和政府因为AI而变得更加完善,这些都是影响人类生活重要决策制定的部门

Jasper Snoek,谷歌大脑:从离散数据源中新兴的技术和NLP将让我们能够分析医疗记录,发现症状,并预测医疗结果

Jorg Bornschien,DeepMind:在快速获取知识方面我们将见到很大的进展:少数据学习(few shot learning),在少数据学习中,生成器或判别器模型只需要从少数几个样本中泛化

Kimberly Powell,英伟达:更多企业将在他们自己的产业中部署AI,在业务中融入独特的用户体验。得益于AI的普及,各行各业的人都将用AI进行创新。

5年以后呢?

Eli David,DeepMind:真正的智能(人类及其他动物)研究有很强的证据表明,大脑里神经元的数量与智能程度呈正相关。这对人工神经网络也一样,尽管有人可能说,当前最先进的深度学习模型与上世纪90年代的神经网络非常类似,但两者的主要区别是网络中连接(synapses)的数量现在增长了100万倍。

由此我预测,在接下来的几十年,深度学习模型的大小将呈指数级增长,我们将找到越来越好的神经网络架构和参数,达到甚至超越人类水平。我认为这将在我们大多数人的有生之年实现。

缩写词:

人工智能那么火~如今AI的应用场景都有哪些?_第13张图片

 

发布于 07-10

 

 

 

作者:阿里云云栖号
链接:https://www.zhihu.com/question/282715644/answer/704648188
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
 

摘要:19个AI热门应用领域,你知道多少?

 

1. 自然语言生成(Natural Language Generation)

自然语言生成是人工智能的分支,研究如何将数据转化为文本,用于客户服务、报告生成以及市场概述

2.语音识别(Speech Recognition)

Siri就是一个典型的例子。

目前,通过语音应答交互系统和移动应用程序对人类语言进行转录的系统已多达数十万。

 

人工智能那么火~如今AI的应用场景都有哪些?_第14张图片

 

3.虚拟助理(Virtual Agents)

虚拟助理是一种能与人类进行交互的计算机代理或程序,其中以聊天机器人最为著名。虚拟助理多用于客户服务和支持,并可以作为智能家居的管理者

 

人工智能那么火~如今AI的应用场景都有哪些?_第15张图片

 

4.机器学习平台(Machine Learning Platforms)

机器学习是计算机科学和人工智能技术的分支,它能提升计算机的学习能力。

通过提供算法、API(应用程序接口)、开发和训练工具包、数据、以及计算能力来设计、培训和部署模型到应用程序、流程和其他机器,广受企业青睐,用以解决预测和分类任务

Adext是世界上第一个也是唯一的观众管理工具,它将人工智能和机器学习应用于数字广告,以期将广告精准的投放给最符合产品定位的受众。

 

人工智能那么火~如今AI的应用场景都有哪些?_第16张图片

 

5.人工智能硬件优化(AI-optimized Hardware)

用于运行面向人工智能的计算任务,是经过专门设计和架构的GPU(图形处理单元)和CPU(中央处理单元)。

即将推出的基于人工智能优化的硅芯片,将直接嵌入到你的便携设备以及生活各处。

6.决策管理(Decision Management)

智能机器能够向AI系统引入规则及逻辑,因此你可以利用它们进行初始化设置/训练,以及持续的维护和优化。

 

人工智能那么火~如今AI的应用场景都有哪些?_第17张图片

 

决策管理在多类企业应用中得以实现,它能协助或者进行自动决策,实现企业收益最大化

7.深度学习平台(Deep Learning Platforms)

深度学习平台是机器学习的一种特殊形式,它包含多层的人工神经网络,能够模拟人类大脑,处理数据并创建决策模式。目前主要被用于基于大数据集的模式识别和分类

8.生物信息(Biometrics)

这项技术能够识别、测量、分析人类行为以及身体的物理结构和形态

 

人工智能那么火~如今AI的应用场景都有哪些?_第18张图片

 

它能赋予人类和机器之间更多的自然交互能力,包括但不仅限于图像、触控识别和身体语言识别,目前被广泛用于市场研究领域

9.机器处理自动化(Robotic Processes Automation)

机器处理自动化使用脚本和其它方法实现人类操作的自动化,以支持更高效的商业流程。

目前被用于人力成本高昂或效率较低的任务和流程

 

人工智能那么火~如今AI的应用场景都有哪些?_第19张图片

 

机器处理自动化能将人类的才能最大化的展示出来,并且让职工更加具有创造性和战略性,对公司的发展至关重要。

10.文本分析和自然语言处理(Text Analytics and Natural Language Processing)

文本分析和自然语言处理利用统计和机器学习方法理解句子的结构、含义、情绪和意图,广泛应用于欺诈探测和信息安全等领域,同时还可用于非结构化数据的挖掘

11.数字孪生/AI建模(Digital Twin/AI Modeling)

数字孪生是一种软件架构,搭建起物理系统和数字世界的桥梁。

通用电气公司(General Electric,GE)宣布将成立一家人工智能公司,用于对飞机引擎、机车、燃气轮机的监控、以及故障预测。该公司的数字孪生仅几行代码,即便是最复杂的版本看上去也就像三维计算机辅助设计图纸,充满了交互式图表和数据点。

12.网络防御(Cyber Defense)

 

人工智能那么火~如今AI的应用场景都有哪些?_第20张图片

 

网络防御是一种计算机网络防御机制,专注于预防、检测以及在基础设施和信息在受到攻击和威胁时进行及时响应

人工智能和机器学习将网络防御带入了新的发展阶段:在2017年,共检测出20亿次的入侵记录,其中76%的入侵是意外发生的,69%是身份丢失造成的。

递归神经网络(Recurrent neural networks,RNN)能够处理输入序列,与机器学习技术相结合创建出监督学习技术,能够发现可疑目标,并检测出高达85%的网络攻击。

Darktrace和Cylance等初创公司高度重视人工智能结合网络防御领域的工作。Darktrace将行为分析与高等数学相结合,自动检测组织内部的异常行为,Cylance应用人工智能算法来阻止恶意软件的入侵并减轻攻击造成的损害。另一家致力于网络防御的公司,Deep Instinct,被看作是“最具破坏性的初创公司”,该公司旨在保护企业的端点、服务器和移动设备。

13.合规( Compliance)

合规是指一个人或者一家公司的经营活动与公认管理、法规、规章、标准或合同条款相一致。

将人工智能应用于合规工作中已屡见不鲜,自然语言处理技术能够扫描文本并且将其模式与关键字相匹配,以识别与公司有关的变动。

具有预测分析功能和场景构建器的资本压力测试技术能够帮助公司遵守监管资本要求。此外,深度学习的使用,能有效减少被标记为潜在洗钱活动的交易数量。

14.知识工作辅助(Knowledge Worker Aid)

虽然许多人都很担心AI是否会完全取代人类工作,但别忘了,AI科技能够在很大程度上帮助人们出色的完成自己的工作,特别是在知识工作领域。

知识工作的自动化已被列为第二大最具破坏性的新兴技术。在大量依靠知识工作者的医疗和法律领域,从业者们将逐渐使用AI技术作为诊断工具。

 

人工智能那么火~如今AI的应用场景都有哪些?_第21张图片

 

15.内容创作(Content Creation)

内容创作包括人们对网络世界输入的任何材料,如视频、广告、博客、白皮书、信息图表以及其它视觉或者书面材料。

哥伦比亚广播公司等团队已使用了AI技术进行内容生成;Wibbitz的SaaS平台可以通过人工智能视频产品把文字内容转化为视频内容;自动透视公司研发的Wordsmith,在获取数据后利用自然语言处理技术进行新闻写作。

16.P2P网络( Peer-to-Peer Networks)

P2P网络是指网络的参与者共享他们所拥有的一部分硬件资源,这些共享资源通过网络提供服务和内容,能被其它P2P节点直接访问而无需经过中间实体。

Bet Capital LLC的首席执行长本•哈特曼在接受《创业者》杂志采访时表示,P2P网络也被用于货币加密,甚至能够通过收集和分析大量数据来解决一些世界上最具挑战性的问题。

 

人工智能那么火~如今AI的应用场景都有哪些?_第22张图片

 

普瑞斯是一家旨在利用P2P网络和人工智能让搜索引擎更加通俗易懂的公司,以加密货币为奖励,让参与者们借出他们电脑的计算能力。相应地,该公司许诺会建立一个更加透明的搜索引擎平台。

17.情绪识别(Emotion Recognition)

情绪识别可以通过高级图像处理或音频数据处理来“读取”人类脸上的表情。目前,我们已经能够捕捉“微表情”,识别肢体语言暗示,以及分析含有情绪的语音语调。

执法人员在审讯过程中使用这项技术能够获取更多的信息,这项技术也被广泛运用于市场营销。

18.图像识别( Image Recognition)

图像识别是指在数字图像或者视频中识别和检测出物体或特征的过程,人工智能技术在该领域具有独特的优势。

 

人工智能那么火~如今AI的应用场景都有哪些?_第23张图片

 

人工智能可以在社交媒体平台上搜索照片,并将其与大量数据集进行比较,从而找出与之最为相关的内容。

图像识别技术能用于车牌识别、疾病检测、客户意见分析以及身份验证等

19.智能营销(Marketing Automation)

到目前为止,市场部门已经从人工智能中获益良多,业界对人工智能的信任是有充分理由的。55%的营销人员确信人工智能在他们的领域会比社交媒体有更大的影响力。

智能营销能够提升公司的参与度和效率,对客户进行细分、集成客户数据和管理活动,并简化重复任务,让决策者们有更多的时间专注战略制定。

 

以上为译文,由阿里云云栖社区组织翻译。

译文链接

文章原标题《19 AI Technologies That Are Currently Dominating》

作者:Ben Cryer,译者:Elaine,审校:袁虎。

文章为简译,更为详细的内容,请查看原文 。

更多技术干货敬请关注云栖社区知乎机构号:阿里云云栖社区 - 知乎

本文为云栖社区原创内容,未经允许不得转载。

发布于 2019-06-04

你可能感兴趣的:(人工智能)