- AI实践:智能工单系统的技术逻辑与应用
合力亿捷-小亿
人工智能机器学习
在当今数字化浪潮下,智能工单系统正逐渐成为企业服务管理的核心利器。智能工单系统,是依托前沿技术,将传统工单流程智能化、自动化的一套体系,它贯穿于企业服务的各个环节,从客户需求提交,到任务分配、进度跟踪,再到问题解决反馈,全方位覆盖。在企业服务管理中,其扮演着关键角色。一方面,它能极大提高服务效率,通过智能算法快速精准地将工单派发给最合适的人员,减少流转时间;另一方面,优化客户体验,客户能实时了解工
- WebRTC H.265 浏览器支持情况(2025年7月2日)
illuspas
h.265webrtc
WebRTCH.265浏览器支持情况简介WebRTC技术在现代实时通信中扮演着重要角色,而H.265(HEVC)作为高效的视频编解码器,能够显著降低带宽需求。以下是当前各平台浏览器对WebRTCH.265支持情况的总结:支持情况总表操作系统浏览器内核版本支持状态WindowsChrome138.0.7204.50✅支持Edge138.0.3351.55❌不支持Firefox140.0.2❌不支持3
- Spring Boot + AI,真的有搞头吗?5大步骤带你轻松入门
墨瑾轩
一起学学Java【一】springboot人工智能后端
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣亲爱的小伙伴们,你们是否听说过SpringBoot和AI结合的消息?是不是觉得这两者听起来就像是天作之合?没错,SpringBoot和AI的结合确实能为我们带来许多意想不到的好处!今天,我们就来一起探讨如何在SpringBoot项目中集成AI功能,让你的应用更
- [2219]基于JAVA的物流车智慧管理系统的设计与实现
阿鑫学长【毕设工场】
java人工智能开发语言课程设计毕业设计
毕业设计(论文)开题报告表姓名学院专业班级题目基于JAVA的物流车智慧管理系统的设计与实现指导老师(一)选题的背景和意义选题背景与意义:随着我国物流行业的快速发展和互联网技术的深度融合,高效、精准、智能的物流管理已经成为企业提升竞争力的关键要素。在当前信息化、智能化的大背景下,基于Java的物流车智慧管理系统的设计与实现具有重要的理论研究价值和广阔的应用前景。首先,从行业背景看,传统的物流管理模式
- “进球了吗?”“App说进了!”——足球数据是怎么第一时间知道的?
东奔西走的小喇叭
智能电视人工智能
“直播画面还在倒角,App却告诉我已经进球了?”你是不是也有过类似的疑问?其实你看到的比分弹窗,比电视直播还“超前”,可不是因为App会算命,而是现代体育数据采集技术早已高度工业化+智能化。今天我们就用一篇文章,带你从技术角度拆解——一粒进球,如何在1秒内被全世界“知晓”?全流程速览:数据是怎么传出来的?复制编辑比赛现场→采集系统记录→数据中心处理→实时推送服务→终端App刷新我们下面就分模块讲清
- 军事,本身就是智能
人机与认知实验室
人工智能大数据
军事智能后面两个字不重要,军事本身就是智能。军事活动中的许多决策和操作本质上都离不开“智能”,不论是指人类的智慧,还是现代技术和人工智能的应用。军事行动本质上是一种复杂的决策过程,涉及到战略、战术、资源配置、情报分析等多个方面。每一个决策都需要充分的智慧和智能的支持,考虑的因素包括敌我态势、地理环境、气候、技术优势等。人类指挥官的战略智慧和经验在军事行动中至关重要,但随着现代技术的发展,智能化技术
- 如何在GNSS信号丢失时依然保持精准导航?
EriccoShaanxi
技术文章无人机算法数据结构人工智能
在无人机飞行、自动驾驶或水下探测等场景中,GNSS信号遮挡或干扰是常见挑战。ER-GNSS/MINS-03组合导航系统凭借深度融合的GNSS/INS技术,即使在卫星信号中断时,也能持续提供高精度定位、姿态和速度数据,确保任务不间断执行。战术级MEMS惯性器件,稳定可靠该系统采用高性能MEMS陀螺仪(零偏不稳定性<0.3°/h)和加速度计(零偏不稳定性<10μg),结合全温补偿技术,在-40℃~+8
- 组合导航系统重新定义低成本定位方案
EriccoShaanxi
技术文章无人机人工智能
在自动化、无人系统和精准农业等领域,高精度导航是核心需求,但传统高端组合导航系统的高成本往往让许多用户望而却步。ER-GNSS/MINS-05作为一款低成本组合导航系统,通过技术优化与精准性能平衡,以更经济的价格提供厘米级定位、0.03m/s测速精度以及0.1°实时航向精度,满足无人飞行器、智能无人车辆、路基定位定向等多样化场景需求,真正实现“高性能”与“低成本”的兼得。深度融合,精准导航ER-G
- 计算机网络高频面试题
1、介绍一下ISO七层网络模型?ISO七层网络模型(OSI参考模型)是国际标准化组织(ISO)提出的网络通信框架,将网络通信划分为七个逻辑层次,每层提供特定的服务并与相邻层交互。其核心目的是实现不同厂商设备的互操作性,并简化网络通信的设计与故障排查。(1)OSI七层模型的结构:物理层(PhysicalLayer)功能:负责传输原始比特流,定义电压、接口等物理特性。关键技术:双绞线、光纤、无线信号(
- 图像分类:从基础原理到前沿技术
随机森林404
计算机视觉分类数据挖掘人工智能
引言在当今数字化时代,图像数据正以惊人的速度增长。从社交媒体上的照片分享到医疗影像诊断,从自动驾驶到工业质检,图像分类技术已经成为人工智能领域最基础也最重要的应用之一。本文将全面介绍图像分类的基础概念、发展历程、关键技术、应用场景以及未来趋势,帮助读者系统性地理解这一领域。第一章图像分类概述1.1什么是图像分类图像分类(ImageClassification)是计算机视觉中的一项核心任务,其目标是
- 基于 WebGL 与 GIS 的智慧垃圾分类三维可视化技术方案
图扑可视化
数字孪生三维可视化垃圾分类智慧环卫
图扑自主研发的HT可视化引擎,基于HTML5的WebGL与Canvas技术构建,形成了完整的2D/3D图形渲染体系。该引擎无需依赖第三方插件,通过纯JavaScript脚本调用API,即可实现跨平台的可视化交互体验,支持PC端、移动端及大屏终端的多屏协同。在三维渲染技术层面,引擎深度集成WebGL底层图形接口,构建了高效的轻量化处理体系。HT还支持3DTiles格式航拍倾斜摄影实景数据、城市建筑群
- 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(续)
格图素书
算法人工智能
目录3.4点云数据精简3.4.1数据精简的要求3.4.2经典精简算法分析3.5点云三维重建算法3.5.1曲面重建方式的分类3.5.2点云数据的三角剖分3.5.3Delaunay三角剖分算法3.5.4贪婪投影三角化算法3.5.5泊松曲面重建算法4特征保留优化的点云精简4.1引言4.2点云精简的思想4.3基于图信号的特征保留优化的点云精简算法4.3.2定义密度均匀性损失4.4点云精简实验结果及分析5隧
- 探索3D空间新维度:gltf-to-3d-tiles开源项目推荐
史琼鸽Power
探索3D空间新维度:gltf-to-3d-tiles开源项目推荐gltf-to-3d-tilesglTFto3dTilesConverter.ConvertglTFmodeltoGlb,b3dmor3dtilesformat.项目地址:https://gitcode.com/gh_mirrors/gl/gltf-to-3d-tiles在数字世界日益壮大的今天,高效地展示三维模型成为了技术领域的一大
- 通义灵码+DeepSeek:国产代码生成王炸组合,带你飞!
引言在人工智能飞速发展的当下,AI代码生成工具如雨后春笋般涌现,为开发者们带来了前所未有的编程体验。其中,国产的通义灵码结合DeepSeek模型异军突起,成为众多开发者关注的焦点。它们凭借强大的功能和出色的表现,在代码生成领域崭露头角,不仅提升了开发效率,还为编程工作流注入了新的活力。然而,如同任何新兴技术一样,在使用过程中也会遇到各种问题和挑战。本文将通过实测,深入剖析通义灵码与DeepSeek
- Python, C ++,C #开发全球英才阐教版集结令APP
Geeker-2025
pythonc++c语言
以下是为使用**Python、C++和C#**开发**全球英才(阐教版)集结令APP**的深度技术方案,融合三语言优势构建跨平台、高智能的玄门英才聚合系统:---###一、系统架构设计```mermaidgraphTDA[多端客户端]-->B{C#阐道引擎}B-->C[C++玄法核心]C-->D[Python慧识层]D-->E[AI英才匹配]C-->F[天机推演]B-->G[三界通信]G-->H[
- Python, Rust 开发教育/医疗/文化资源去中心化分配APP
Geeker-2025
pythonrust
以下是为教育、医疗、文化资源设计的**去中心化分配APP**的完整技术方案,结合Python的灵活性和Rust的高性能与安全性,实现公平透明的资源分配:---###系统架构设计```mermaidgraphTDA[用户终端]-->B[区块链网络]A-->C[分配引擎]B-->D[智能合约]C-->E[资源数据库]D-->F[分配记录]subgraph技术栈C-.Rust.->G[核心分配算法]D-
- Python, Go 开发客户服务软件APP
Geeker-2025
pythongolang
以下是一个结合Python和Go开发的**客户服务软件APP**的完整技术方案,充分利用Python的AI能力和Go的高并发特性,构建高性能、智能化的客户服务系统:---###系统架构设计```mermaidgraphTDA[客户端]-->B[GoAPI网关]B-->C[工单管理]B-->D[实时聊天]B-->E[知识库]B-->F[AI引擎]C-->G[工单数据库]D-->H[消息队列]F-->
- MySQL 中的慢查询分析与优化:定位并解决性能瓶颈
you的日常
#MySQLmysqlandroid数据库database
在任何数据库驱动的应用程序中,**慢查询(SlowQuery)**都是性能瓶颈的罪魁祸首之一。一个执行缓慢的SQL查询不仅会延长用户的等待时间,降低用户体验,还可能长时间占用数据库资源,导致连接耗尽、系统吞吐量下降,甚至引发连锁反应导致整个系统崩溃。因此,识别、分析和优化慢查询是数据库性能调优的重中之重。本文将深入探讨MySQL中的慢查询分析与优化技术,从开启慢查询日志、定位慢查询,到利用EXPL
- 基于nodejs+vue.js服装商店电子商务管理系统
如果你是一个小白,你不懂得像javaPHP、Python等编程语言,那么Node.js是一个非常好的选择。采用vscode软件开发,配套软件安装.包安装调试部署成功,有视频讲解前端:html+vue+elementui+jQuery、js、css数据库:mysql,Navicatvue框架于Node运行环境的Web框架,随着互联网技术的飞速发展,世界逐渐成了一个地球村,空间的距离也不再是那么重要。
- 利用ADB实现PC与Android设备的通信与数据交互
虾仁芝麻卷
本文还有配套的精品资源,点击获取简介:本文详细介绍了如何使用AndroidDebugBridge(ADB)实现PC与Android终端的通信,特别是通过Java编程语言的应用。介绍了配置ADB、设备连接、端口映射、Java编程实现设备通信、异常处理以及关闭连接等关键步骤,并强调了该技术在多种开发场景下的应用和注意事项。1.ADB功能与重要性AndroidDebugBridge(ADB)是一种多功能
- 计算机网络基础知识+学习路线
早起的小懒虫
计算机网络网络
计算机网络是一种将多个计算机设备通过通信线路连接在一起,使其能够相互传输数据和共享资源的技术和设施。1.基础知识学习计算机网络需要了解计算机硬件、操作系统、编程语言等基础知识。计算机硬件:计算机硬件包括中央处理器(CPU)、存储器、输入输出设备等。CPU是计算机的核心,负责执行程序和控制计算机的各种操作。存储器主要有随机存储器(RAM)和只读存储器(ROM),用于存储数据和程序。输入输出设备包括键
- uni-app 多端开发中 AI 的集成与适配:一次开发,智能多端运行
欧阳天羲
大前端与AI的深度融合#AI与大前端框架结合篇uni-app人工智能前端
一、引言:uni-app与AI多端集成的背景在当今跨平台开发趋势下,uni-app凭借"一次编写,多端运行"的特性成为企业级应用开发的首选框架之一。随着人工智能技术的普及,将AI能力集成到多端应用中已成为提升用户体验的关键需求。然而,小程序、APP、Web等不同端的运行环境差异显著,如何实现AI功能的统一集成与高效适配成为开发难点。本文将系统讲解在uni-app框架中集成AI能力的完整方案,涵盖跨
- 计算机毕业设计Node.js+Vue新海图书商城网页设计论文(程序+源码+LW+部署)
Node.js橙子毕设程序
vue.js课程设计node.js
该项目含有源码、文档、程序、数据库、配套开发软件、软件安装教程。欢迎交流项目运行环境配置:Node.js+Vscode+Mysql5.7+HBuilderX+Navicat11+Vue+Express。项目技术:Express框架+Node.js+Vue等等组成,B/S模式+Vscode管理+前后端分离等等。环境需要1.运行环境:最好是Nodejs最新版,我们在这个版本上开发的。其他版本理论上也可
- 大语言模型技术系列讲解:大模型应用了哪些技术
知世不是芝士
语言模型人工智能自然语言处理chatgpt大模型
为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。正文开始大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要
- 无人机3控接力模式技术分析
云卓SKYDROID
无人机云卓科技遥控器通道高科技
一、运行方式1.接力控制流程位置触发切换:飞控中心实时监测无人机位置,当进入预设的切换路线(如靠近下一个机库或控制器覆盖范围)时,触发切换流程。控制权请求与验证:当前控制器(如控制器A)向目标控制器(控制器B)发送接管请求。控制器B分析无人机与自身的空间关系(如竖直夹角需在20°~30°范围内),满足条件则接收控制权,否则拒绝。密钥认证接管:目标控制器与无人机通过握手机制交换序列号,飞控中心下发加
- 大模型算法工程师面试宝典:精选面试题及参考答案全解析,助你备战AI算法工程师岗位!
大模型入门学习
人工智能产品经理大数据机器学习程序员大模型大模型学习
大模型应该算是目前当之无愧的最有影响力的AI技术。它正在革新各个行业,包括自然语言处理、机器翻译、内容创作和客户服务等,正成为未来商业环境的重要组成部分。截至目前大模型已超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关面试也是越来越卷。我今天给大家分享一篇大模型的面试题总结,内容较长,喜欢记得收藏、关注、点赞。ii.为什么会出现LLMs复读机问题?出现LLMs复读机问题可能
- Spark on Docker:容器化大数据开发环境搭建指南
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶大数据sparkdockerai
SparkonDocker:容器化大数据开发环境搭建指南关键词:Spark、Docker、容器化、大数据开发、分布式计算、开发环境搭建、容器编排摘要:本文系统讲解如何通过Docker实现Spark开发环境的容器化部署,涵盖从基础概念到实战部署的完整流程。首先分析Spark分布式计算框架与Docker容器技术的核心原理及融合优势,接着详细演示单节点开发环境和多节点集群环境的搭建步骤,包括Docker
- 机器学习在智能金融风险评估中的应用:信用评分与欺诈检测
Blossom.118
机器学习与人工智能机器人机器学习人工智能python深度学习sklearn计算机视觉
在金融行业,风险评估是确保金融机构稳健运营的关键环节。随着大数据和机器学习技术的快速发展,金融机构开始探索如何利用机器学习算法来提高风险评估的准确性和效率。本文将探讨机器学习在智能金融风险评估中的应用,特别是信用评分和欺诈检测方面的最新进展,并分析其带来的机遇和挑战。一、智能金融风险评估中的信用评分(一)传统信用评分方法的局限性传统的信用评分主要依赖于人工规则和简单的统计模型,如逻辑回归。这些方法
- LLM---大语言模型技术研究报告
摘要大语言模型(LLMs)已从技术突破走向产业规模化落地。2025年,全球LLMs进入“模型即服务”(MaaS)时代,参数量级突破万亿级,多模态能力、智能体协作、专业化细分成为主流趋势。中国大模型领域在DeepSeek、通义千问、讯飞星火等头部模型推动下,实现技术突破与场景创新。本报告基于截至2025年7月的最新数据,系统梳理LLMs的技术演进、应用场景、挑战与未来方向。一、大语言模型的演进与突破
- Web3.0时代的安全悖论:去中心化如何反被中心化攻击?
5GOrDiejfgf
web3安全去中心化
详细内容扩展:技术解析:Solana链上RugPull攻击手法复盘(3亿美元被盗)中心化交易所安全措施对比(CoinbasevsBinance安全预算)合规框架:SEC监管动态:Howey测试最新应用案例税务合规工具:Chainalysis+CoinTracking集成方案投资建议:安全审计公司评级(CertikA级项目列表)硬件钱包对比评测(LedgerNanoXvsTrezorModelT)
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号