大数据系统与大规模数据分析 之 作业三

  • 大数据系统与大规模数据分析 之 作业三
    • 问题描述
    • SSSP编程
    • 同步图计算
    • 程序源码

大数据系统与大规模数据分析 之 作业三

问题描述

作业三:同步图运算编程

  1. 总体任务
    • 实现SSSP的图运算
    • 输入:图,v0
    • 输出:顶点ID,最短路长度

SSSP编程

  1. SSSP

    • 定义:

      • 单源最短路径Single Source Shortest Path
      • 给定一个顶点v0,求v0到每个顶点的最短路径
    • 伪代码:

      function Dijkstra(Graph, source):
          dist[source] = 0 //Distance from source to source
          prev[source] = undefined
          for each vertex v in Graph:
              if v != source:
                  dist[v] = inf
                  prev[v] = undefined
              add v to Q // Q = unvisited nodes
          while Q is not empty:
              u = vertex in Q with min dist[u] // source node in first case
              remove u from Q
              for each neighbor v of u: 
                  alt = dist[u] + length(u, v)
                  if alt < dist[v]:
                      dist[v] = alt
                      prev[v] = u
          return dist[], prev[]
  2. Dijkstra的C++实现:

    struct edge { int to, length; };
    
    int dijkstra(const vector< vector > &graph, int source, int target) {
        vector<int> min_distance( graph.size(), INT_MAX );
        min_distance[ source ] = 0;
        set< pair<int,int> > active_vertices;
        active_vertices.insert( {0,source} );
    
        while (!active_vertices.empty()) {
            int where = active_vertices.begin()->second;
            if (where == target) return min_distance[where];
            active_vertices.erase( active_vertices.begin() );
            for (auto ed : graph[where]) 
                if (min_distance[ed.to] > min_distance[where] + ed.length) {
                    active_vertices.erase( { min_distance[ed.to], ed.to } );
                    min_distance[ed.to] = min_distance[where] + ed.length;
                    active_vertices.insert( { min_distance[ed.to], ed.to } );
                }
        }
        return INT_MAX;
    }

同步图计算

  1. 图计算
    • 同步图计算:
      • 图计算模型:
        • 图运算结束:Active 和 Inactive
          • 所有顶点都变为Inactive时,结束
          • 初始化所有顶点都为Active
      • 系统架构:
        • master分配,每个worker对于一个Graph partition
        • 超步开始:master发布开始消息
        • 超步计算:每个worker进行本地的计算,为本partition的每个顶点调用compute
        • 超步结束:超步k完成,取决于最慢的一个超步完成时间
        • 超步开始:k+1开始
      • 特点:
        • 需要进行多次的迭代
    • 异步图运算:
      • 思路:允许不同顶点有不同的更新速度
      • GraphLab:
        • 共享内存,直接访问内存
  2. Graphlite:
    • GraphLite图计算框架属于BSP模型:
      • GraphLite github地址 https://github.com/schencoding/GraphLite
      • 图很适合进行分布式并行计算,比如最短路径,PageRank等问题
      • 比较著名的图计算框架有Prege,cmu的GraphLab,apache的Giraph等。。
    • 系统函数:
      • getValue:读
      • mutableValue:修改
      • sendMessageToAllNeighbors():发送给每个邻居同样的消息
      • getOutEdgeIterator():发送不同值:
        • 得到OutEdgeIterator,依次访问邻边,sendMessageTo()发送消息
      • voteToHalt():
      • superstep():获取当前超步数,从0开始计数
    • 实现函数:
      • Vertex:顶点、边、发送的消息都是double
      • compute(msg);

程序源码

#include 
#include 
#include 

#include 
#include 
using namespace std;

//#include 
//#include 

#include "GraphLite.h"

#define VERTEX_CLASS_NAME(name) SSSP##name

#define EPS 1e-6

#include
//#define INF (numeric_limits::max())
#define INF INT_MAX
int v0_id; // source_id

class VERTEX_CLASS_NAME(InputFormatter): public InputFormatter {
public:
    int64_t getVertexNum() {
        unsigned long long n;
        sscanf(m_ptotal_vertex_line, "%lld", &n);
        m_total_vertex= n;
        return m_total_vertex;
    }
    int64_t getEdgeNum() {
        unsigned long long n;
        sscanf(m_ptotal_edge_line, "%lld", &n);
        m_total_edge= n;
        return m_total_edge;
    }
    int getVertexValueSize() {
        m_n_value_size = sizeof(double);
        return m_n_value_size;
    }
    int getEdgeValueSize() {
        m_e_value_size = sizeof(double);
        return m_e_value_size;
    }
    int getMessageValueSize() {
        m_m_value_size = sizeof(double);
        return m_m_value_size;
    }
    void loadGraph() {
        unsigned long long last_vertex;
        unsigned long long from;
        unsigned long long to;
        double weight = 0;

        double value = 1;
        int outdegree = 0;

        const char *line= getEdgeLine();

        // Note: modify this if an edge weight is to be read
        //       modify the 'weight' variable

        sscanf(line, "%lld %lld %lf", &from, &to, &weight);
        addEdge(from, to, &weight);

        last_vertex = from;
        ++outdegree;
        for (int64_t i = 1; i < m_total_edge; ++i) {
            line= getEdgeLine();

            // Note: modify this if an edge weight is to be read
            //       modify the 'weight' variable

            sscanf(line, "%lld %lld %lf", &from, &to, &weight);
            if (last_vertex != from) {
                addVertex(last_vertex, &value, outdegree);
                last_vertex = from;
                outdegree = 1;
            } else {
                ++outdegree;
            }
            addEdge(from, to, &weight);
        }
        addVertex(last_vertex, &value, outdegree);
    }
};

class VERTEX_CLASS_NAME(OutputFormatter): public OutputFormatter {
public:
    void writeResult() {
        int64_t vid;
        double value;
        char s[1024];

        for (ResultIterator r_iter; ! r_iter.done(); r_iter.next() ) {
            r_iter.getIdValue(vid, &value);
            int n = sprintf(s, "%lld: %d\n", (unsigned long long)vid, (int)value);
            writeNextResLine(s, n);
        }
    }
};

// An aggregator that records a double value tom compute sum
class VERTEX_CLASS_NAME(Aggregator): public Aggregator<double> {
public:
    void init() {
        m_global = 0;
        m_local = 0;
    }
    void* getGlobal() {
        return &m_global;
    }
    void setGlobal(const void* p) {
        m_global = * (double *)p;
    }
    void* getLocal() {
        return &m_local;
    }
    void merge(const void* p) {
        m_global += * (double *)p;
    }
    void accumulate(const void* p) {
        m_local += * (double *)p;
    }
};

class VERTEX_CLASS_NAME(): public Vertex <double, double, double> {
public:
    void compute(MessageIterator* pmsgs) {
        int val;
    int source_id = (int)v0_id;
    //if(getSuperstep() == 0){
        if ((double)getVertexId() == source_id){
            val = 0;
            //printf("12312312312312111111111111");
        } else {
            val = INF;
        }


    //printf(" 12 %lf", (double)getVertexId());
        //if (getSuperstep() == 0) {
           //val= 10000;
    //   sendMessageToAllNeighbors(val);
        //} else {

        if (getSuperstep() >= 50) {
            double global_val = * (double *)getAggrGlobal(0);
            if (global_val < EPS) {
                voteToHalt(); return;
            }
        }
    //printf("!!!!!!!msg value %f\n", (double)pmsgs->getValue());
        for ( ; ! pmsgs->done(); pmsgs->next() ) {
                //sum += pmsgs->getValue();
        if (pmsgs->getValue() < val){
        val = pmsgs->getValue();
        /*if (1 == getVertexId()){
            printf("this %lf",(double)pmsgs->getValue());}  */  
        }
    /*  if(1==getVertexId()){
            printf("testttttt %f",(double)val);}*/
        }
    //  if(1==getVertexId()){printf("%f \n",(double)val);}

    //printf("the getValue()= %f \n",(double)getValue());
    if((val < getValue())|| getSuperstep() == 0)
    {
        if(1==getVertexId()){printf("%f \n",(double)val);}
        printf("getValue() = %f \n",(double)getValue());
        * mutableValue() = val;
            //double acc = fabs(getValue() - val);
            //accumulateAggr(0, &acc);
        OutEdgeIterator otherEdge = getOutEdgeIterator();
        for (; ! otherEdge.done(); otherEdge.next()){
        double vertex_id = otherEdge.target();
        double edge_value = otherEdge.getValue();
            //sendMessageTo(vertex_id, val + edge_value);
        //printf("the edge_value: %f \n", (double)edge_value);
        /*if ( getVertexId() == 0){
        printf("the vertex_id:%f \n", (double)vertex_id);
        }*/

        //if (vertex_id == source_id) {
        //  val = 0;
        //  //* mutableValue() = val;
        //  sendMessageTo(vertex_id, val + edge_value); 
        //  //printf("111: %lf", (double)val);
        //} else {
        sendMessageTo(vertex_id, val + edge_value);
        //}
            }
    }
//  * mutableValue() = val;
    //if(getVertexId() < 4){printf("\n%lf here is %lf \n",(double)getVertexId(),(double)val);}
        //const int64_t n = getOutEdgeIterator().size();
        //sendMessageToAllNeighbors(val / n);
    //printf("the end msg value %d", (int)pmsgs->getValue());
    voteToHalt();
    }
};

class VERTEX_CLASS_NAME(Graph): public Graph {
public:
    VERTEX_CLASS_NAME(Aggregator)* aggregator;

public:
    // argv[0]: PageRankVertex.so
    // argv[1]: 
    // argv[2]: 
    // argv[3]: 
    void init(int argc, char* argv[]) {

        setNumHosts(5);
        setHost(0, "localhost", 1411);
        setHost(1, "localhost", 1421);
        setHost(2, "localhost", 1431);
        setHost(3, "localhost", 1441);
        setHost(4, "localhost", 1451);

        if (argc < 3) {
           printf ("Usage: %s  \n", argv[0]);
           exit(1);
        }

        m_pin_path = argv[1];
        m_pout_path = argv[2];

    v0_id = atoi(argv[3]);

        aggregator = new VERTEX_CLASS_NAME(Aggregator)[1];
        regNumAggr(1);
        regAggr(0, &aggregator[0]);
    }

    void term() {
        delete[] aggregator;
    }
};

/* STOP: do not change the code below. */
extern "C" Graph* create_graph() {
    Graph* pgraph = new VERTEX_CLASS_NAME(Graph);

    pgraph->m_pin_formatter = new VERTEX_CLASS_NAME(InputFormatter);
    pgraph->m_pout_formatter = new VERTEX_CLASS_NAME(OutputFormatter);
    pgraph->m_pver_base = new VERTEX_CLASS_NAME();

    return pgraph;
}

extern "C" void destroy_graph(Graph* pobject) {
    delete ( VERTEX_CLASS_NAME()* )(pobject->m_pver_base);
    delete ( VERTEX_CLASS_NAME(OutputFormatter)* )(pobject->m_pout_formatter);
    delete ( VERTEX_CLASS_NAME(InputFormatter)* )(pobject->m_pin_formatter);
    delete ( VERTEX_CLASS_NAME(Graph)* )pobject;
}

你可能感兴趣的:(大数据,算法)