elastic search:基础语法7.x

花了2小时装完了elastic search,那么得花半小时了解下简单语法了,把简单语法的操作学习了一下,然后在这边做一个记录.


es支持restful风格api,操作可以用http请求实现

创建一个新的索引库:

#号后面的得删掉

PUT /leyou     #库名
{
  "settings": {
    "number_of_shards": 1,        #分片数量
    "number_of_replicas": 0	#副本数量
  }
}

查看索引信息

GET /leyou //库名

删除索引库

DELETE /leyou

创建完索引库之后,当然要添加映射了(mappings),就和数据库要加表一样

这里先说下基本的常用类型

  • String类型,又分两种:

    • text:可分词,不可参与聚合
    • keyword:不可分词,数据会作为完整字段进行匹配,可以参与聚合
  • Numerical:数值类型,分两类

    • 基本数据类型:long、interger、short、byte、double、float、half_float
    • 浮点数的高精度类型:scaled_float
    • 需要指定一个精度因子,比如10或100。elasticsearch会把真实值乘以这个因子后存储,取出时再还原。
  • Date:日期类型
    elasticsearch可以对日期格式化为字符串存储,但是建议我们存储为毫秒值,存储为long,节省空间。

PUT /索引库名/_mapping    #(自7.0起取消了Type,不需要加索引类型名,统一为_doc)
{
  "properties": {
    "字段名": {
      "type": "类型",     	#类型:可以是text、long、short、date、integer、object等
      "index": true,		#是否索引,默认为true
      "store": true,		#是否存储,默认为false
      "analyzer": "分词器"	#分词器,这里的`ik_max_word`即使用ik分词器
    }
  }
}
  • index: 默认值就是true,也就是说你不进行任何配置,所有字段都会被索引。
    但是有些字段是我们不希望被索引的,比如商品的图片信息,就需要手动设置index为false。

  • store: 是否将数据进行额外存储。_source 默认false

例:

PUT /leyou/_mapping
{
  "properties":{
    "title":{
      "type": "text",
      "analyzer": "ik_max_word"
    },
    "images":{
      "type": "keyword",
      "index": "false"
    },
    "price":{
      "type":"float"
    }
  }
}

查看索引库的索引类型: GET /索引库名/_mapping

例: GET /leyou/_mapping

有了映射以后,就可以新增数据了

插入分两种

指定文档ID插入:手动指定ID
自动产生文档ID插入:不是MySQL那样的AutoIncrement,而是类似MongoDB那样的自动生成ID
POST /索引库名/_doc(/手动添加的id)
{
    "key":"value"
}

例:

POST /leyou/_doc/
{
  "title":"华为手机",
  "images":"http://image.leyou.com/10086.jpg",
  "price":2799.00
}

POST /leyou/_doc/1
{
  "title":"小米手机",
  "images":"http://image.leyou.com/10086.jpg",
  "price":2699.00
}

查询刚刚插入的数据: GET /leyou/_search

如果插入了映射之外的数据,es会对这些数据的类型进行智能判断:

这里多了两个新增的字段,es会将其推断为 long与bool 添加映射并添加数据

例:

POST /leyou/_doc/3
{
    "title":"OPPO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":true
}

修改数据请求方式为PUT: 当表中有id相符的数据时,执行修改,没有时,执行添加

例:

PUT /leyou/_doc/3
{
    "title":"OPPO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":false
}

PUT /leyou/_doc/4    #这条,添加了数据
{
    "title":"VIVO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2199.00,
    "stock": 200,
    "saleable":true
}

删除: DELETE /索引库名/_doc/id值

例: DELETE /leyou/_doc/4 #刚刚添加的被删除了

查询:

基本查询:

GET /索引库名/_search
{
    "query":{
        "查询类型":{
            "查询条件":"查询条件值"
        }
    }
}

查询类型: match_all:查所有match:匹配查询term:词条查询range:范围查询

GET /leyou/_search
{
  "query": {
    "match": {
      "title": "手机"   #查title字段包含手机的文档(匹配的数据)
    }
  }  
}

GET /leyou/_search
{
    "query":{
        "match_all": {}   #查所有  可简写为 GET /leyou/_search
    }
}
深化一下单数据查询: 先加个华为Mac
POST /leyou/_doc/5
{
  "title":"华为Mac",
  "images":"http://image.leyou.com/10086.jpg",
  "price":3799.00
}

这里用匹配查一下华为

GET /leyou/_search
{
  "query": {
    "match": {
      "title": "华为Mac"
    }
  }  
}

结果出现了手机 和 Mac ,可是 场景是 我只想搜索Mac啊,为什么给我推华为手机 这里通过条件操作属性 改良查询json

GET /leyou/_search
{
  "query": {
    "match": {
      "title": {
        "query": "华为Mac",
        "operator": "and"     #这里定义了操作符and,表示只检索完全匹配的数据
      }
    }
  }  
}

现在场景再次变化,添加一个华为电视

POST /leyou/_doc/6
{
  "title":"华为电视",
  "images":"http://image.leyou.com/10086.jpg",
  "price":6799.00
}

我们想搜索 华为Mac的同时,了解电视的行情(华为Mac电视),上面的操作符and又不好用了(没有结果)

这里引入 minimum_should_match 匹配的程度 可以是词条数目也可以是百分比(通常百分比)

GET /leyou/_search
{
  "query": {
    "match": {
      "title": {
        "query": "华为Mac电视",
        "minimum_should_match": "75%"    #搜索75%匹配的数据
      }
    }
  }  
}

多字段查询:multi_match

先加一个数据:

POST /leyou/_doc/7
{
  "title":"华为手机",
  "subTitle":"吊打小米",
  "images":"http://image.leyou.com/10086.jpg",   
  "price":6799.00
}

GET /leyou/_search
{
  "query": {
    "multi_match": {
      "query": "华为吊打小米",   		#搜索内容
      "fields": ["title","subTitle"],  		#搜索的字段title,subTitle
      "minimum_should_match": "75%"	#匹配程度
    }
  }
}

成功搜索到了插入的数据

词条查询:term 查询条件必须为不可分词的最小词条

查出华为的全部内容

GET /leyou/_search
{
  "query": {
    "term": {
      "title": {
        "value": "华为"
      }
    }
  }
}

多词条精确匹配:terms

查出:包含手机与电视的内容(精确匹配)

GET /leyou/_search
{
  "query": {
    "terms": {
      "title": [
        "小米",
        "电视"
      ]
    }
  }
}

基本查询补充 过滤

查出title匹配手机的数据,并只显示title,price字段

GET /leyou/_search
{
  "_source": ["title","price"], 
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}

includes:只包含

GET /leyou/_search
{
  "_source": {
    "includes": "price"
  },
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}

excludes:排除

GET /leyou/_search
{
  "_source": {
    "excludes": "subTitle"
  },
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}

bool组合将其他查询通过must(与) should(或) must_not(非) 组合

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },{
          "term": {
            "price": "3799"
          }
        }
      ]
    }
  }
}

范围查询range

查出了价格范围为5000到9999的文档,并且,匹配华为

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },{
          "range": {
            "price": {
              "gte": 5000,
              "lte": 9999
            }
          }
        }
      ]
    }
  }
}

fuzzy模糊查询

fuzziness表示模糊的容错为1个字(要是一个字与value不同也会被查到)
fuzzy中只能放词

GET /leyou/_search
{
  "query": {
    "fuzzy": {
      "title": {
       "value": "手视",
       "fuzziness": 1
      }
    }
  }
}

filter过滤

一般配合bool查询使用,对结果进行过滤,这种过滤是不会影响到_source(排名)
filter过滤一般配合搜索栏外的选项上的进行过滤
elastic search:基础语法7.x_第1张图片

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  }
}

range放在bool中,虽然结果一样,但是会影响_source(排名)

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },
        {
          "range": {
            "price": {
              "gte": 1000,
              "lte": 8000
            }
          }
        }
      ]
    }
  }
}

排序

一般根据query的结果进行排序
desc:降序 asc:升序

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  },
  "sort": [
    {
      "price": {
        "order": "asc"
      }
    }
  ]
}

排序也可以组合,当排序1相同时,按所写字段2排序
价格升序,价格相同_id降序

GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  },
  "sort": [
    {
      "price": {
        "order": "asc"
      }
    },{
      "_id":{
        "order": "desc"
      }
    }
  ]
}

聚合aggregations

桶bucket: 它只负责分组,不负责计算,因此其中通常会嵌套另一种聚合

Elasticsearch中提供的划分桶的方式有很多:

  • Date Histogram Aggregation:根据日期阶梯分组,例如给定阶梯为周,会自动每周分为一个存储单元
  • Histogram Aggregation:根据数值阶梯分组,与日期类似
  • Terms Aggregation:根据词条内容分组,词条内容完全匹配的为一个存储单元
  • Range Aggregation:数值和日期的范围分组,指定开始和结束,然后按段分

创建一个新的索引库

PUT /cars
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
      "properties": {
        "color": {
          "type": "keyword"
        },
        "make": {
          "type": "keyword"
        }
      }
  }
}
POST /cars/_doc/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }

GET /cars/_search

聚合为桶: aggs后跟多个聚合对象 对象由聚合方式与包含的参数组成
"size": 0 即不显示普通结果集,只显示聚合后内容(size为显示结果集的数量)
terms 词条分桶

GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}

histogram阶梯分桶
"interval": 阶梯区间
"min_doc_count": 展示的最小条数(设为1就是,桶中没东西就不展示)

GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "price_histogram": {
      "histogram": {
        "field": "price",
        "interval": 10000,
        "min_doc_count": 1
      }
    }
  }
}

度量(metrics): 分组完成以后,我们一般会对组中的数据进行聚合运算,例如求平均值、最大、最小、求和等,这些在ES中称为度量

比较常用的一些聚合度量方式:

  • Avg Aggregation:求平均值
  • Max Aggregation:求最大值
  • Min Aggregation:求最小值
  • Percentiles Aggregation:求百分比
  • Stats Aggregation:同时返回avg、max、min、sum、count等
  • Sum Aggregation:求和
  • Top hits Aggregation:求前几
  • Value Count Aggregation:求总数

度量嵌套在聚合中,对聚合的结果进行计算 (嵌套在聚合名称中,一个桶可以有多个度量)
下面popular_color为桶名 price_avg,makes为度量名

GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "price_avg": {
          "avg": {
            "field": "price"
          }
        },
        "makes":{
          "value_count": {
            "field": "make"
          }
        }
      }
    }
  }
}

桶内还可以嵌套桶 看到生成桶的关键字,即嵌套桶
下面makes_factory为嵌套的桶

GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "price_avg": {
          "avg": {
            "field": "price"
          }
        },
        "makes_factory":{
          "terms": {
            "field": "make"
          }
        }
      }
    }
  }
}

附上完整json

PUT /leyou
{
  "settings": {
    "number_of_shards": 1, 
    "number_of_replicas": 0
  }
}

GET /leyou

PUT /leyou/_mapping
{
  "properties":{
    "title":{
      "type": "text",
      "analyzer": "ik_max_word"
    },
    "images":{
      "type": "keyword",
      "index": "false"
    },
    "price":{
      "type":"float"
    }
  }
}

GET /leyou/_mapping

POST /leyou/_doc/
{
  "title":"华为手机",
  "images":"http://image.leyou.com/10086.jpg",
  "price":2799.00
}

GET /leyou/_search

POST /leyou/_doc/3
{
    "title":"OPPO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":true
}

PUT /leyou/_doc/3
{
    "title":"OPPO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2899.00,
    "stock": 200,
    "saleable":false
}

PUT /leyou/_doc/4
{
    "title":"VIVO手机",
    "images":"http://image.leyou.com/123456.jpg",
    "price":2199.00,
    "stock": 200,
    "saleable":true
}

DELETE /leyou/_doc/4

GET /leyou/_search
{
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}

GET /leyou/_search
{
    "query":{
        "match_all": {}
    }
}

POST /leyou/_doc/5
{
  "title":"华为Mac",
  "images":"http://image.leyou.com/10086.jpg",
  "price":3799.00
}

GET /leyou/_search
{
  "query": {
    "match": {
      "title": "华为Mac"
    }
  }  
}

GET /leyou/_search
{
  "query": {
    "match": {
      "title": {
        "query": "华为Mac",
        "operator": "and"
      }
    }
  }  
}

POST /leyou/_doc/6
{
  "title":"华为电视",
  "images":"http://image.leyou.com/10086.jpg",
  "price":6799.00
}

GET /leyou/_search
{
  "query": {
    "match": {
      "title": {
        "query": "华为Mac电视",
        "minimum_should_match": "75%"
      }
    }
  }  
}

POST /leyou/_doc/7
{
  "title":"华为手机",
  "subTitle":"吊打小米",
  "images":"http://image.leyou.com/10086.jpg",
  "price":6799.00
}
 
GET /leyou/_search
{
  "query": {
    "multi_match": {
      "query": "华为吊打小米",
      "fields": ["title","subTitle"],
      "minimum_should_match": "75%"
    }
  }
}

GET /leyou/_search
{
  "query": {
    "term": {
      "title": {
        "value": "华为"
      }
    }
  }
}

GET /leyou/_search
{
  "query": {
    "terms": {
      "title": [
        "小米",
        "电视"
      ]
    }
  }
}

GET /leyou/_search
{
  "_source": {
    "includes": "price"
  },
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}

GET /leyou/_search
{
  "_source": {
    "excludes": "subTitle"
  },
  "query": {
    "match": {
      "title": "手机"
    }
  }  
}
#bool组合将其他查询通过must()  should()  must_not()  组合
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },{
          "term": {
            "price": "3799"
          }
        }
      ]
    }
  }
}

GET /leyou/_search

#范围查询range

#查出了价格范围并且,匹配华为
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },{
          "range": {
            "price": {
              "gte": 5000,
              "lte": 9999
            }
          }
        }
      ]
    }
  }
}

#fuzziness表示模糊的容错为1个字   fuzzy中只能放词
GET /leyou/_search
{
  "query": {
    "fuzzy": {
      "title": {
       "value": "手视",
       "fuzziness": 1
      }
    }
  }
}

#filter过滤,一般配合bool查询使用,对结果进行过滤,这种过滤是不会影响到_source(排名),过滤一般配合搜索栏外的选项上的进行过滤
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  }
}

#放在bool中,虽然结果一样,但是会影响_source(排名)
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        },
        {
          "range": {
            "price": {
              "gte": 1000,
              "lte": 8000
            }
          }
        }
      ]
    }
  }
}

#排序,一般根据query的结果进行排序  desc:降序  asc:升序  排序也可以组合,当排序1相同时,按所写字段2排序
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  },
  "sort": [
    {
      "price": {
        "order": "asc"
      }
    }
  ]
}

#价格升序,价格相同_id降序
GET /leyou/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match": {
            "title": "华为"
          }
        }
      ],
      "filter": {
        "range": {
          "price": {
            "gte": 1000,
            "lte": 8000
          }
        }
      }
    }
  },
  "sort": [
    {
      "price": {
        "order": "asc"
      }
    },{
      "_id":{
        "order": "desc"
      }
    }
  ]
}

PUT /cars
{
  "settings": {
    "number_of_shards": 1,
    "number_of_replicas": 0
  },
  "mappings": {
      "properties": {
        "color": {
          "type": "keyword"
        },
        "make": {
          "type": "keyword"
        }
      }
  }
}

POST /cars/_doc/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }

GET /cars/_search

#聚合为桶   aggs后跟多个聚合对象   对象由聚合方式,包含的参数组成  
#"size": 0   即不显示 普通结果集,只显示聚合后内容

#terms词条分桶
GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}

#度量嵌套在聚合中,对聚合的结果进行计算  (嵌套在聚合名称中,一个桶可以有多个度量)
#popular_color为桶名   price_avg,makes为度量名 
GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "price_avg": {
          "avg": {
            "field": "price"
          }
        },
        "makes":{
          "value_count": {
            "field": "make"
          }
        }
      }
    }
  }
}
#桶内还可以嵌套桶  看到生成桶的关键字,即嵌套桶
GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "popular_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "price_avg": {
          "avg": {
            "field": "price"
          }
        },
        "makes_factory":{
          "terms": {
            "field": "make"
          }
        }
      }
    }
  }
}
#histogram阶梯分桶  "interval": 阶梯区间 
#"min_doc_count": 展示的最小条数(设为1就是,桶中没东西就不展示)
GET /cars/_search
{
  "size": 0, 
  "aggs": {
    "price_histogram": {
      "histogram": {
        "field": "price",
        "interval": 10000,
        "min_doc_count": 1
      }
    }
  }
}

你可能感兴趣的:(elastic,search)