- ffmpeg 命令转vp9
980205
ffmpeg
mp4转vp9./ffmpeg-itest.mp4-pix_fmtyuv420p10le-c:vlibvpx-vp9-b:v0-crf31-speed1-qualitygood-static-thresh4 -lag-in-frames25 -fwebmout.webmyuv转vp9,需要指定yuv的高宽//转vp9./ffmpeg-pix_fmtyuv420p-s704*576 -i out.y
- 自然语言处理系列四十》条件随机场CRF》CRF开源工具实战
陈敬雷-充电了么-CEO兼CTO
自然语言处理人工智能aipython深度学习机器人机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列四十条件随机场(CRF)开源工具实战新词发现与短语提取总结自然语言处理系列四十条件随机场(CRF)开源工具实战目前条件随机场最流行的开源工具是CRF++。CRF++工具包最早是针对序列数据分析提出的,是一个可用于分词/连续数
- [Python人工智能] 四十二.命名实体识别 (3)基于Bert+BiLSTM-CRF的中文实体识别万字详解(异常解决中)
Eastmount
人工智能pythonbert实体识别bert4keras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结果有些问题,目前还在解决中,但现阶段方法先作为在线笔记分享出来。基础性文章,希望对您有帮助,如
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
人工智能自然语言处理数据挖掘
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- [Python人工智能] 四十一.命名实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
python人工智能实体识别BiGRU-CRFKeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将以中文语料为主,介绍中文命名实体识别研究,并构建BiGRU-CRF模型实现。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!由于上一篇文章详细讲解ATT
- 实体命名识别详解(十三)
yousa_
self.add_pred_op()接下来是add_pred_op操作,看字面意思是预测用。defadd_pred_op(self):"""Definesself.labels_predThisopisdefinedonlyinthecasewherewedon'tuseaCRFsinceinthatcasewecanmaketheprediction"inthegraph"(thankstotf
- 军用水壶
彭莫山一束光
《军用水壶》原文链接:https://mp.weixin.qq.com/s/Ep-eVcR-crfdubgMl2grXg刚退役回来,到当地银行办卡,工作人员专门送了一个军用水壶给我,很有纪念意义。这是个老式的军用水壶,虽然说新款的更酷,但我还是更偏爱旧式的。它朴素,看上去有些笨拙,老土,但可爱,坚定,无惧风霜,就像一位可靠的老战友。记得小时候看的老电影《上甘岭》里,它就曾出过场,不知道最近热映的《
- 传感网应用开发知识点总结
程序小鹿
传感网应用开发(中级)物联网stm32arm网络协议经验分享
传感网应用开发知识点总结1+X职业技能等级证书-传感网应用开发一、数据采集1、模拟量数据采集2、数字量传感器数据采集3、开关量传感器数据采集二、STM32微控制器基本外设应用开发STM32重要知识点总结三、RS-485总线通讯应用RS-485总线重要知识点四、CAN总线通讯应用1.CAN基础知识2.CAN通信帧类型3.CAN控制器与收发器五、基于BasicRf的无线通信应用BasicRf重要知识点
- okuex官方活动声明!
OKUEX
okuex为庆祝用户突破一千万,现推出经纪人活动,个人操作可获得20%手续费,介绍朋友最高可获得手续费60%!官方活动推广码:LCRF8E(此为申请经纪人推广码)参加活动需加客服QQ:547689144必加验证码:888
- [当人工智能遇上安全] 11.威胁情报实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
当人工智能遇上安全人工智能实体识别BiGRU威胁情报Python
您或许知道,作者后续分享网络安全的文章会越来越少。但如果您想学习人工智能和安全结合的应用,您就有福利了,作者将重新打造一个《当人工智能遇上安全》系列博客,详细介绍人工智能与安全相关的论文、实践,并分享各种案例,涉及恶意代码检测、恶意请求识别、入侵检测、对抗样本等等。只想更好地帮助初学者,更加成体系的分享新知识。该系列文章会更加聚焦,更加学术,更加深入,也是作者的慢慢成长史。换专业确实挺难的,系统安
- 大数据TensorFlow深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统(完整系统源码+PPT+详细开发文档+论文+源码解析)
谁不学习揍谁!
深度学习bertlstm知识图谱人工智能神经网络机器学习
文章目录大数据TensorFlow深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统(完整系统源码+PPT+详细开发文档+论文+源码解析)获取项目资料方式在文章末尾获取项目资料方式在文章末尾一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介
- 基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践
汀、人工智能
人工智能知识图谱LSTM分词算法信息抽取词性标注NLP
基于BiLSTM-CRF模型的分词、词性标注、信息抽取任务的详解,侧重模型推导细化以及LAC分词实践1.GRU简介GRU(GateRecurrentUnit)门控循环单元,是[循环神经网络](RNN)的变种种,与LSTM类似通过门控单元解决RNN中不能长期记忆和反向传播中的梯度等问题。与LSTM相比,GRU内部的网络架构较为简单。GRU内部结构RU网络内部包含两个门使用了更新门(updategat
- ORACLE拼接字符串
ruleslol
ORACLEoracle数据库
1、可以使用“||”来拼接字符串:selectb.province||'-'||b.city||'-'||b.Addressaslocation_descrFROMelearning.Opt_UseraJOINelearning.Opt_TrainingbONa.Trainingid=b.IdJOINelearning.Core_UserprofileuONa.Userid=u.IdWHEREa.
- 多路径配置问题和ACFS启用原因导致rac二节点不能正常启动
烟雨归来
数据库oracle
二节点启动时,crsd一直不能启动成功,crsctlstatres-t-init查看crsd是offline状态ora.asm1ONLINEONLINErac2Started,STABLEora.cluster_interconnect.haip1ONLINEOFFLINErac2STABLEora.crf1ONLINEONLINErac2STABLEora.crsd1ONLINEOFFLINES
- 汉语言处理包 HanLP v1.3.5,新功能、优化与维护
lanlantian123
HanLPv1.3.5更新内容:大幅优化CRF分词和二阶HMM分词,重构CharacterBasedGenerativeModelSegment自定义词典支持热更新:#563,ngram模型支持热加载:#580新增一个提高用户词典优先级的开关:#633支持98年人民日报的复合词语料格式,如"[中央/n人民/n广播/vn电台/n]nt"开放TextRank关键词提取中的最大迭代次数参数:#577为T
- 【转载】图像分割 DeepLab v2
dopami
https://blog.csdn.net/cv_family_z/article/details/72643479标题:DeepLab:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs网站:http://liangchiehchen.com/projects/Dee
- 我们玩游戏,那是因为我们要拯救世界啊
游戏怎么你了
能力越大责任越大昨天的暴雪爸爸更新了一款《守望先锋》——粉红天使的新皮肤,新皮肤售价98人民币已经是《守望先锋》标准版游戏的价格了。抱歉放错图应该是这个不过特别的是暴雪与公益组织BCRF合作,将皮肤的销售收入百分百全部捐赠给了乳腺癌研究机构,用作乳腺癌治愈方法的研究。很酷对不对,为了信仰买买买!!!这不是你们暴雪爸爸第一次这样做了《守望先锋》玩家比较熟悉漓江塔英雄宏宇雕像的故事了。广州工业大学学生
- 大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统
星川皆无恙
机器学习与深度学习知识图谱自然语言处理深度学习大数据知识图谱神经网络机器学习bertlstm
文章目录大数据知识图谱之深度学习——基于BERT+LSTM+CRF深度学习识别模型医疗知识图谱问答可视化系统一、项目概述二、系统实现基本流程三、项目工具所用的版本号四、所需要软件的安装和使用五、开发技术简介Django技术介绍Neo4j数据库Bootstrap4框架Echarts简介NavicatPremium15简介Layui简介Python语言介绍MySQL数据库深度学习六、核心理论贪心算法A
- bert+crf可以做NER,那么为什么还有bert+bi-lstm+crf ?
Maann
NLPbertlstm深度学习
1.关于BERT做NER要不要加CRF层?关于BERT做NER,最简单的方式就是序列标注方法,以BERT得到token的embedding,后接softmax直接输出预测token的标签。其实这种方案做NER也不错,为什么有些人会采用CRF替代softmax,softmax比较简单就是基于tokenembedding进行标签概率计算。而CRF的原理上理解是,CRF是全局无向转移概率图,能有效考虑词
- NLP任务之Named Entity Recognition
sunshine2853
自然语言处理人工智能深度学习
深度学习的实现方法:双向长短期记忆网络(BiLSTM):BiLSTM是一种循环神经网络(RNN)的变体,能够捕捉序列数据中的长期依赖关系。在NER任务中,BiLSTM能有效地处理文本序列,捕捉前后文本的依赖关系。条件随机场(CRF):CRF经常与BiLSTM结合使用,形成BiLSTM-CRF模型。CRF层能够在序列标注任务中提供额外的约束,帮助模型更准确地预测实体标签。变压器(Transforme
- Bi-Lstm+crf命名实体识别任务中crf的作用
sunshine2853
深度学习lstm人工智能crf
这是一段使用百度ernie-1.0做特征提取的Bi-Lstm+crf的代码:classERNIE_LSTM_CRF(nn.Module):"""ernie_lstm_crfmodel"""def__init__(self,ernie_config,tagset_size,embedding_dim,hidden_dim,rnn_layers,dropout_ratio,dropout1,use_c
- 自然语言处理系列十五》中文分词》机器学习统计分词》CRF分词
陈敬雷-充电了么-CEO兼CTO
python人工智能算法分布式算法人工智能大数据自然语言处理
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列十五中文分词CRF分词总结自然语言处理系列十五中文分词中文分词(ChineseWordSegmentation)指的是将一个汉字序列切分成一个一个单独的词。分词就是将连续的字序列按照一定的规范重新组合成词序列的过程。我们知道
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- 基于BiLSTM-CRF对清华语料文本进行分类
伪_装
自然语言处理深度学习分类深度学习自然语言处理
安装TorchCRF!pipinstallTorchCRF==1.0.6构建BiLSTM-CRF#encoding:utf-8importtorchimporttorch.nnasnnfromTorchCRFimportCRFfromtorch.utils.dataimportDatasetfromsklearn.model_selectionimporttrain_test_splitimpor
- Deeplab系列语义分割模型
CPones
计算机视觉深度学习神经网络
目录一、网络模型1.deeplabv12.deeplabv23.deeplabv34.deeplabv3+二、空洞卷积三、代码实现总结一、网络模型1.deeplabv1深度卷积神经网络(DCNN)和条件随机场(CRF)相结合来解决像素级分类问题,最后一层的CRF提高模型捕捉细节和边缘分割的能力,对于大量使用最大池化和下采样导致分辨率下降的问题,通过空洞卷积来扩大感受野。2.deeplabv2ASP
- DeepLabV2网络简析
太阳花的小绿豆
深度学习网络解析语义分割深度学习计算机视觉DeepLabV2语义分割
论文名称:SemanticImageSegmentationwithDeepConvolutionalNets,AtrousConvolution,andFullyConnectedCRFs论文下载地址:https://arxiv.org/abs/1606.00915论文对应开源项目:http://liangchiehchen.com/projects/DeepLab.html视频讲解:https
- 机器学习-63-Structured Learning-04-Sequence Labeling Problem(结构化学习-序列标注(HMM,CRF))
迷雾总会解
李宏毅机器学习自然语言处理机器学习结构化学习
文章目录SequenceLabelingProblemSequenceLabelingDefinitionApplicationExampleTask:POStaggingOutline(大纲)HMM介绍什么样的问题需要HMM模型Howyougenerateasentence?step1step2HMM的数学表达Estimatingtheprobabilities(概率估计)HowtodoPOST
- 可能会绕过RNN了
我的昵称违规了
最近看了一些关于nlp技术路线的文章,自从2018年bert之后,nlp的重点似乎已经从rnn转移到transformer。在之前已经学习了lstm和gru,看了一下之后几天的学习安排,主要是基于crf的依存分析和命名实体辨别。我会尽量使用hanlp(这个库已经能够较好完成以上的需求)。因为Allenlp是基于pytorch,有可能还要看pytorch。进一步还会仔细拆一下transformer,
- NLP系列学习:CRF条件随机场(1)
云时之间
大家好,今天让我们来看看条件随机场,条件随机场是一项大内容,在中文分词里广泛应用,因为我们在之前的文章里将概率图模型和基本的形式语言知识有所了解,当我们现在再去学习条件随机场会容易比较多(在动笔写这篇文章前我也翻阅了很多的博客,发现很多博主上来就讲一大堆核心公式,而之前的铺垫知识都很少提,我觉得这不太好,会让很多人一开始就懵).而我希望在我的这几篇文章尽可能的减少单纯理论知识的复述,而是通过一些实
- deeplab 系列文章
horsetif
deeplabv1:semanticimagesegmentationwithdeepconvolutionalnetsandfullyconnectedCRFs对于传统的DCNN网络来说,其实都是具有不变性的这个特征的,深度学习是十分适合高阶的计算机视觉任务。但是,对于底层的比如semanticsegmentation的任务来说,是十分不利的。目前的两个大问题就是:1,降采样问题。2,不变形问题
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin