- 《极致C语言》第2章 -- 从源文件到二进制文件
Fyang0906
极致C语言学习笔记c语言c++
《极致C语言》第2章–从源文件到二进制文件extreme-c-learning-notesch2《极致C语言》第2章--从源文件到二进制文件《极致C语言》第2章--从源文件到二进制文件1.编译过程1.1.构建C项目1.2.第1步--预处理1.3第2步--编译1.4第3步--汇编1.5第4步--链接2.预处理器3.编译器4.汇编器5.链接器1.编译过程预处理器编译器汇编器链接器C源代码通过:预处理-
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- Windows 远程桌面 RDP 会话超时设置
TechExplorer365
Toolwindows
Windows远程桌面RDP会话超时设置Windows远程桌面(RDP)可能由于会话超时而导致重新要求登录。你可以通过修改注册表或组策略来延长远程桌面的会话超时时间。修改注册表:打开注册表编辑器(regedit)。导航到以下路径:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\TerminalServer找到IdleTimeoutSecs键(
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- Apache TVM:开源深度学习编译器栈的领跑者
计攀建Eliza
ApacheTVM:开源深度学习编译器栈的领跑者tvmOpendeeplearningcompilerstackforcpu,gpuandspecializedaccelerators项目地址:https://gitcode.com/gh_mirrors/tv/tvm项目介绍ApacheTVM是一个专为深度学习系统设计的编译器栈。它旨在弥合生产力导向的深度学习框架与性能和效率导向的硬件后端之间的差
- 2025年01月30日Github流行趋势
油泼辣子多加
GitHub每日趋势github
项目名称:Janus项目地址url:https://github.com/deepseek-ai/Janus项目语言:Python历史star数:11942今日star数:2187项目维护者:learningpro,hills-code,TheOneTrueGuy,mowentian,soloice项目简介:Janus系列:统一多模态理解和生成模型项目名称:DeepSeek-Coder项目地址ur
- 使用PyTorch实现线性SVM指南
余桢钟
使用PyTorch实现线性SVM指南svm-pytorchLinearSVMwithPyTorch项目地址:https://gitcode.com/gh_mirrors/sv/svm-pytorch本指南基于GitHub上的开源项目svm-pytorch,旨在帮助开发者理解和运用这个库来在PyTorch框架下实现支持向量机(SupportVectorMachines,SVM)。项目介绍sparse
- Rust中奖励函数的实现与应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Rust中奖励函数的实现与应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Rust,奖励函数,强化学习,机器学习,状态空间1.背景介绍1.1问题的由来在机器学习领域,特别是在强化学习(ReinforcementLearning,RL)中,奖励函数(RewardFunction)扮演着至关重要的角色。它定义了智能体(Agent)在执行任务时
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- Linux服务器上安装 Vision Mamba 虚拟环境---全面教程
wsa-
python计算机视觉机器学习
本人装环境踩了很多坑,翻了很多大佬的博客最终安装并运行成功!以下是我的经验分享:1.去GitHub下载VisionMamba的code并上传至服务器上GitHub-hustvl/Vim:VisionMamba:EfficientVisualRepresentationLearningwithBidirectionalStateSpaceModelgithub.com/hustvl/Vim编辑2.环
- 【DL】神经网络与机器学习基础知识介绍(一)
MengWoods
深度学习机器学习神经网络人工智能
原博客:https://mengwoods.github.io/post/dl/009-dl-fundamental/文章目录基本通用概念梯度下降算法数据工程训练技术偏差与方差防止过拟合评估指标决策树基本通用概念机器学习的类型:监督学习(SupervisedLearning):分类,回归无监督学习(UnsupervisedLearning):聚类,降维强化学习(ReinforcementLearn
- 《深度剖析Q-learning中的Q值:解锁智能决策的密码》
人工智能深度学习
在人工智能的飞速发展进程中,强化学习作为一个关键领域,为智能体与环境交互并学习最优行为策略提供了有效框架。其中,Q-learning算法凭借其独特的魅力,在机器人控制、自动驾驶、游戏AI等众多领域大放异彩。而Q-learning中的Q值,更是理解这一算法的核心关键,它如同智能体的“智慧密码”,指导着智能体在复杂环境中做出最优决策。Q值的直观定义:行为价值的“预言家”从直观层面理解,Q值代表着智能体
- 《极致C语言》第1章 -- 基本特性
Fyang0906
极致C语言学习笔记c语言
《极致C语言》第1章–基本特性extreme-c-learning-notesch1《极致C语言》第1章--基本特性《极致C语言》第1章--基本特性1.预处理指令2.变量指针3.函数4.结构1.预处理指令预处理指令是C语言的一个功能强大的特性,即在把源代码提交给编译器之前对源代码进行的设计和修改。预处理的目的是删除预处理指令,并用生成的等效C代码替换它们,从而得到提交给编译器的最终源代码。C预处理
- 从规则到神经网络:机器翻译技术的演进与未来展望
Echo_Wish
前沿技术人工智能神经网络机器翻译人工智能
从规则到神经网络:机器翻译技术的演进与未来展望引言还记得早些年用翻译软件翻译一句简单的英文句子,却发现翻译结果让人啼笑皆非的日子吗?从“我喜欢吃苹果”被翻译成“我喜欢吃苹果电脑”,到今天的神经网络机器翻译(NeuralMachineTranslation,NMT)能够生成语义流畅、接近人类水平的翻译,我们见证了机器翻译技术的巨大飞跃。但机器翻译技术是如何一步步发展到今天的?未来又将走向何方?本文将
- MyEclipse最新版-版本更新说明及下载 - MyEclipse官方中文网
weixin_34268310
开发工具
http://www.myeclipsecn.com/learningcenter/myeclipse-update/【重要更新】MyEclipse2015正式版发布【重要更新】MyEclipse2015Stable2.0发布【重要更新】MyEclipse2016CI0正式发布【重要更新】MyEclipse2016Stable1.0发布【重要更新】MyEclipse2017CI1正式发布【重要更新
- 【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
Icomi_
807.《机器学习前置知识》机器学习人工智能计算机视觉深度学习神经网络c++c语言
目录编辑编辑1.Chapter2WhyLinearAlgebra?2.Chapter3WhatIsaVector?个人主页:Icomi大家好,我是Icomi,本专栏是我阅读外文原版书《BeforeMachineLearning》对于文章中我认为能够增进线性代数与机器学习之间的理解的内容的一个输出,希望能够帮助到各位更加深刻的理解线性代数与机器学习。若各位对本系列内容感兴趣,可以给我点个关注跟进内容
- 日志2025.1.28
science怪兽
unity游戏程序算法
日志2025.1.281.实现了霰弹枪射击//霰弹枪射击privatevoidShotgunShoot(){for(inti=0;i();_transposer=_cam.GetCinemachineComponent();}//改变相机的距离publicvoidChangeCameraDistance(floatdistance){_transposer.m_CameraDistance=dis
- 强化学习中,为什么用AC架构
资源存储库
算法强化学习算法
目录强化学习中,为什么用AC架构为什么用AC架构?AC架构的工作原理AC架构的优缺点优点:缺点:相关算法:基于AC架构的算法总结强化学习中,为什么用AC架构在强化学习(ReinforcementLearning,RL)中,AC架构(即Actor-Critic架构)是一种非常常用的架构,用于训练智能体(Agent)在环境中执行任务。AC架构结合了策略梯度方法和价值迭代方法,通过分离策略和价值函数的估
- machine learning knn算法之使用KNN对鸢尾花数据集进行分类
知识鱼丸
machinelearning机器学习算法分类
通过导入必要的scikit-learn导入必要的库,加载给定的数据,划分测试集和训练集之后训练预测和评估即可具体代码如下:importnumpyasnpfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportStandardS
- 从零推导线性回归:最小二乘法与梯度下降的数学原理
Echo-Nie
机器学习机器学习线性回归人工智能梯度下降数学推导
欢迎来到我的主页:【Echo-Nie】本篇文章收录于专栏【机器学习】本文所有内容相关代码都可在以下仓库中找到:Github-MachineLearning1线性回归1.1什么是线性回归线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直线(或者一个平面),让这条直线尽可能地“拟合”已有的数据点,通过这条直线,我们可以预测新的数据。eg:假设你想预测房价,你知道房子的大小(面积)
- 机器学习入门——机器学习基本概念
四月是你的
机器学习
@机器学习什么是机器学习机器学习(MachineLearning,ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎简单来说机器学习就是机
- 【llm对话系统】RL强化学习的技术演进与RLHF
kakaZhui
人工智能chatgptllama
一、强化学习基础知识强化学习(ReinforcementLearning,RL)是一种机器学习方法,它通过智能体(Agent)与环境(Environment)的交互来学习如何行动以最大化累积奖励(Reward)。1.核心概念:智能体(Agent):做出决策并采取行动的学习者。环境(Environment):智能体所处的外部世界,对智能体的行动做出反应。状态(State,S):对环境当前情况的描述。
- XQuery 添加元素 和属性
fengshou1
node.js
向结果添加元素和属性正如在前面一节看到的,我们可以在结果中引用输入文件中的元素和属性:for$xindoc("books.xml")/bookstore/book/titleorderby$xreturn$x上面的XQuery表达式会在结果中引用title元素和lang属性,就像这样:EverydayItalianHarryPotterLearningXMLXQueryKickStart以上XQu
- CVPR 2024 人脸方向总汇(人脸识别、头像重建、人脸合成和3D头像等)
点云SLAM
图形图像处理深度学习计算机视觉3D人脸人脸识别头像重建
1、Face(人脸)UnsupervisedGazeRepresentationLearningfromMulti-viewFaceImagesToonerGAN:ReinforcingGANsforObfuscatingAutomatedFacialIndexingPairDETR:JointDetectionandAssociationofHumanBodiesandFacesNeuralIm
- 利用MMDetection进行模型微调和权重初始化
MickeyCV
目标检测深度学习目标检测计算机视觉python
目录模型微调修改第一处:更少的训练回合Epoch修改第二处:更小的学习率LearningRate修改第三处:使用预训练模型权重初始化实际使用案例init_cfg的具体使用规则初始化器配置汇总本文基于MMDetection官方文档,对模型微调和权重初始化进行第三方讲解。模型微调在COCO数据集上预训练的检测器可以作为其他数据集优质的预训练模型。微调超参数与默认的训练策略不同。它通常需要更小的学习率和
- 自主学习与自然语言处理的融合:实现更智能的聊天机器人
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍自主学习(autonomouslearning)是一种学习方法,它允许机器人或计算机系统在没有人类干预的情况下自行学习和改进。自主学习可以帮助机器人或计算机系统更好地适应新的环境和任务,提高其智能性和效率。自然语言处理(naturallanguageprocessing,NLP)是计算机科学和人工智能领域的一个分支,它涉及计算机如何理解、处理和生成人类语言。自主学习与自然语言处理的融合
- word07打开文档速度非常慢,无响应,关闭时也无响应的解决方案
chouling7793
操作系统
关闭所有office程序按住windows和r键-〉出现运行窗口-〉regedit进入注册表编辑器找到HKEY_CURRENT_USER\Software\Microsoft\Office\12.0\WordHKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Office\Word\Addins(放word加载项的)将word和addins重命名为word1和addins1
- 什么是光刻机-ChatGPT4o作答
部分分式
笔记
光刻机(PhotolithographyMachine),是半导体制造中用于将电路图形精确地转印到硅片(晶圆)表面的一种关键设备。光刻机技术的突破和发展,直接决定了半导体行业中芯片的性能、密度和成本。光刻技术是集成电路(IC)制造过程中最重要的步骤之一,它通过精密的光学系统将电路图形投影到硅片上的光刻胶层,从而形成电路的结构。1.光刻技术的基本原理光刻技术的核心思想是通过光照射到涂布有光刻胶的晶圆
- 蓝桥杯真题 - 翻转 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3520/learning/个人评价:难度1星(满星:5)前置知识:无整体思路贪心,除了第一位跟最后一位,其它字符,每当S[i]≠T[i]S[i]\neqT[i]S[i]=T[i]时,能换则换;为什么可以贪心?因为如果某段连续的数字为101101101或者010010010,在被修改之后变为111111111或者00000
- 蓝桥杯真题 - 三国游戏 - 题解
ExRoc
蓝桥杯算法c++
题目链接:https://www.lanqiao.cn/problems/3518/learning/个人评价:难度2星(满星:5)前置知识:贪心整体思路先假设魏蜀吴中的某一个势力最终获胜的情况下,如何求出事件发生的最大数量,最后枚举三个势力获胜的情况取最大值就是答案;假设魏国最终胜利,那最好是让已发生的事件中AiA_iAi的和尽可能大于Bi+CiB_i+C_iBi+Ci的和,大得越多越优先选择让
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D