POJ1328解题报告

每日一看

Radar Installation

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 40799   Accepted: 9034

 

Description

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. 

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. 

 
Figure A Sample Input of Radar Installations

 

Input

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. 

The input is terminated by a line containing pair of zeros 

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

Sample Output

Case 1: 2
Case 2: 1

 

题意:假设海岸线是一条无限延伸的直线。陆地在海岸线的一侧,而海洋在另一侧。每一个小的岛屿是海洋上的一个点。雷达坐落于海岸线上,只能覆盖d距离,所以如果小岛能够被覆盖到的话,它们之间的距离最多为d。

 

题目要求计算出能够覆盖给出的所有岛屿的最少雷达数目。

 

我们假设岛屿i它的x坐标为island[i][0],而y坐标为island[i][1],那么有以下几种情况是invalide的,即输出-1的情况:

1.island[i][1]<0

2.abs(island[i][1])

3.d<0

 

其他的情况,应该就是正常情况,进入计算最小雷达数目。

如上图,红色的点为岛屿,那么能够覆盖到此岛屿的雷达所在的区间,应该就是以该岛屿为圆心的圆与x轴交点所在的区间。

这样,我们就可以计算出所有岛屿的雷达所在的区间,得到一个区间数组。

我们将这个数组按照区间左部分进行排序,那么重叠部分就表明这些岛屿的雷达可以共用一个。从而计算出最终解。

 

 

#include
#include
#include
#define MAXNUM 12701
//以岛屿为圆心,以d为半径做圆;得到各个圆与x轴相交的区间;去掉重复区间,即得到雷达数目 
int calMin(int **island,int n,int d);
int main() {
    
    int num = 0;
    char s[10];
    
    while(1){
             
          num++;
          int n,d,i;
          scanf("%d%d",&n,&d);
          
          if(n==0&&d==0){
          
                break;               
          }         
          
          int **island = (int**)malloc(sizeof(int*)*n);
          for(i=0;id||d<0){
                                                   
              return -1;
         }
         
         //计算左右区间
         if(abs(island[i][1]-d)<1e-6){
                                      
            arr[2*i] = island[i][0];
            arr[2*i+1] = island[i][0];                             
         }else{
               
             //计算
             double x = sqrt(pow(d,2)-pow(island[i][1],2)); 
             
             arr[2*i] = (double)island[i][0] - x;
             arr[2*i+1] = (double)island[i][0] + x;     
         }
    }
    
    //排序
    for(i=0;iarr[2*(j+1)]){
                                        
                   double temp = arr[2*(j+1)];
                   arr[2*(j+1)] = arr[2*j];
                   arr[2*j] = temp;
                   
                   temp = arr[2*(j+1)+1];
                   arr[2*(j+1)+1] = arr[2*j+1];
                   arr[2*j+1] = temp;                          
              }                     
        }        
    } 
    
    //去掉重合区间,得到雷达个数
    int num = 0;
    double right = -1;
    
    for(i=0;i

 

 

 

 

 

你可能感兴趣的:(贪心)