High Accuracy Chinese Plate Recognition Framework, This research aims at simply developping plate recognition project based on deep learning methods, with low complexity and high speed. This project has been used by some commercial corporations. Free and open source, deploying by Zeusee.
Github : https://github.com/icepoint666/HyperLPR
Forked from zeusees/HyperLPR 略加改动
只需要三个代码文件:
- multi_demo.py
- demo.py
- HyperLPRLite.py
在项目路径 /HyperLPR 中运行下面指令
例如:
$ python demo.py --detect_path dataset/1.jpg \
> --save_result_flag True \
> --plot_result_flag True \
> --save_path /home/icepoint/Pictures/
- detect_path: 被检测图片的路径,
default = None
- cascade_model_path: 用于object detection的模型文件路径
default = model/cascade.xml
- mapping_vertical_model_path: 用左右边界回归模型文件路径
default = model/model12.h5
- ocr_plate_model_path: 用于检测车牌中的文字
default = model/ocr_plate_all_gru.h5
- save_result_flag: 是否保存识别结果图片
default = True
- plot_result_flag: 是否输出识别结果图片
default = True
- save_path: 识别结果图片存储路径folder (None表示不存储)
default = None
在项目路径 /HyperLPR 中运行下面指令
示例:
$ python multi_demo.py --detect_parent_path dataset/ \
> --save_result_flag True \
> --plot_result_flag True \
> --save_path /home/icepoint/Pictures/
参数:
- detect_parent_path: 被检测图片目录folder
default = None
- cascade_model_path: 用于object detection的模型文件路径
default = model/cascade.xml
- mapping_vertical_model_path: 用左右边界回归模型文件路径
default = model/model12.h5
- ocr_plate_model_path: 用于检测车牌中的文字
default = model/ocr_plate_all_gru.h5
- save_result_flag: 是否保存识别结果图片
default = True
- plot_result_flag: 是否输出识别结果图片
default = True
- save_path: 识别结果图片存储路径folder (None表示不存储)
default = None
import HyperLPRLite as pr
import cv2
import numpy as np
grr = cv2.imread("images_rec/2_.jpg")
model = pr.LPR("model/cascade.xml","model/model12.h5","model/ocr_plate_all_gru.h5")
for pstr,confidence,rect in model.SimpleRecognizePlateByE2E(grr):
if confidence>0.7:
image = drawRectBox(grr, rect, pstr+" "+str(round(confidence,3)))
print "plate_str:"
print pstr
print "plate_confidence"
print confidence
cv2.imshow("image",image)
cv2.waitKey(0)
(1) opencv2的imread函数导入图片, 返回的是Mat类型。
(2) HyperLPRLiite.py中的LPR类构造函数导入model, 参数就是训练好的三个模型文件,名字分别是:
- model/cascade.xml
- model/model12.h5
- model/ocr_plate_all_gru.h5
class LPR():
def __init__(self,model_detection,model_finemapping,model_seq_rec):
self.watch_cascade = cv2.CascadeClassifier(model_detection)
self.modelFineMapping = self.model_finemapping()
self.modelFineMapping.load_weights(model_finemapping)
self.modelSeqRec = self.model_seq_rec(model_seq_rec)
(3)参数 model_detection 就是文件 model/cascade.xml
用到了 opencv2的CascadeClassifier()函数
cv2.CascadeClassifier()
参数输入.xml或者.yaml文件,表示加载模型
一种基于Haar特征的级联分类器用于物体检测的模型
(4) model.SImpleRecognizePlateByE2E()函数
for pstr,confidence,rect in model.SimpleRecognizePlateByE2E(grr):
if confidence>0.7:
image = drawRectBox(grr, rect, pstr+" "+str(round(confidence,3)))
print "plate_str:"
print pstr
print "plate_confidence"
print confidence
输入为一个Mat类型的图片
输出为识别的车牌字符串,以及confidence可信度,
定义在 HyperLPRLite.py:
def SimpleRecognizePlateByE2E(self,image):
images = self.detectPlateRough(image,image.shape[0],top_bottom_padding_rate=0.1)
res_set = []
for j,plate in enumerate(images):
plate, rect =plate
image_rgb,rect_refine = self.finemappingVertical(plate,rect)
res,confidence = self.recognizeOne(image_rgb)
res_set.append([res,confidence,rect_refine])
return res_set
其中又用到detectPlateRough()函数
下面有详细说明detectPlateRough函数(5)是返回图像中所有车牌的边框在图片中的bbox
返回的是一个表示车牌区域坐标边框的list
for循环中,对于每个识别出来的车牌用到filemappingVertical()函数(6)
(5) detectPlateRough函数
def detectPlateRough(self,image_gray,resize_h = 720,en_scale =1.08 ,top_bottom_padding_rate = 0.05):
if top_bottom_padding_rate>0.2:
print("error:top_bottom_padding_rate > 0.2:",top_bottom_padding_rate)
exit(1)
height = image_gray.shape[0]
padding = int(height*top_bottom_padding_rate)
scale = image_gray.shape[1]/float(image_gray.shape[0])
image = cv2.resize(image_gray, (int(scale*resize_h), resize_h))
image_color_cropped = image[padding:resize_h-padding,0:image_gray.shape[1]]
image_gray = cv2.cvtColor(image_color_cropped,cv2.COLOR_RGB2GRAY)
watches = self.watch_cascade.detectMultiScale(image_gray, en_scale, 2, minSize=(36, 9),maxSize=(36*40, 9*40))
cropped_images = []
for (x, y, w, h) in watches:
x -= w * 0.14
w += w * 0.28
y -= h * 0.15
h += h * 0.3
cropped = self.cropImage(image_color_cropped, (int(x), int(y), int(w), int(h)))
cropped_images.append([cropped,[x, y+padding, w, h]])
return cropped_images
输入参数:
image_gray: 一个rgb图像,Mat类型
resize_h: 重新设定的图像大小
top_bottom_padding_rate: 表示要裁剪掉图片的上下部占比
这个函数实现的处理:
1.resize图像大小,cv2.resize函数,按照原来图像比例
2.裁剪图片,根据输入的top_bottom_padding_rate如果是0.1,那么上面裁剪掉0.1*height,下面也裁剪掉0.1*height
3.将图像从rgb转化为灰度 cv2.cvtColor函数,cv2.COLOR_RGB2GRAY
4.根据前面的cv2.CascadeClassifier()物体检测模型(3),输入image_gray灰度图像,边框可识别的最小size,最大size,输出得到车牌在图像中的offset,也就是边框左上角坐标( x, y )以及边框高度( h )和宽度( w )
5.对得到的车牌边框的bbox进行扩大,也就是宽度左右各扩大0.14倍,高度上下各扩大0.15倍。
6.返回图片中所有识别出来的车牌边框bbox,这个list作为返回结果。
(6) filemappingVertical函数
def finemappingVertical(self,image,rect):
resized = cv2.resize(image,(66,16))
resized = resized.astype(np.float)/255
res_raw= (np.array([resized]))[0]
res =res_raw*image.shape[1]
res = res.astype(np.int)
H,T = res
H-=3
if H<0:
H=0
T+=2;
if T>= image.shape[1]-1:
T= image.shape[1]-1
rect[2] -= rect[2]*(1-res_raw[1] + res_raw[0])
rect[0]+=res[0]
image = image[:,H:T+2]
image = cv2.resize(image, (int(136), int(36)))
return image,rect
输入参数:
裁剪的车牌区域图像(Mat类型),rect也是裁剪的车牌部分的图像(Mat类型)
实现处理:
1.将原来车牌图像resize大小:66*16*3
2.将原来灰度图颜色通道[0, 255]转化为float类型[0,1]
3.将输入66*16(float),输入进模型进行测试self.modelFineMapping.predict
(7) modelFineMapping模型
class LPR():
def __init__(self,model_detection,model_finemapping,model_seq_rec):
self.watch_cascade = cv2.CascadeClassifier(model_detection)
self.modelFineMapping = self.model_finemapping()
self.modelFineMapping.load_weights(model_finemapping)
self.modelSeqRec = self.model_seq_rec(model_seq_rec)
model_finemapping()函数
def model_finemapping(self):
input = Input(shape=[16, 66, 3]) # change this shape to [None,None,3] to enable arbitraty shape input
x = Conv2D(10, (3, 3), strides=1, padding='valid', name='conv1')(input)
x = Activation("relu", name='relu1')(x)
x = MaxPool2D(pool_size=2)(x)
x = Conv2D(16, (3, 3), strides=1, padding='valid', name='conv2')(x)
x = Activation("relu", name='relu2')(x)
x = Conv2D(32, (3, 3), strides=1, padding='valid', name='conv3')(x)
x = Activation("relu", name='relu3')(x)
x = Flatten()(x)
output = Dense(2,name = "dense")(x)
output = Activation("relu", name='relu4')(output)
model = Model([input], [output])
return model
keras网络模型:对车牌的左右边界进行回归
通过modelFineMapping.loadweights()函数加载模型文件
通过modelFineMapping.predict输出网络结果
输入:16*66*3 tensor
输出:长度为2的tensor
(8) recognizeOne函数
对于每个车牌区域的for循环中,经过fineMappingVertical处理后输入到recognizeOne函数,进行ocr识别
for j,plate in enumerate(images):
plate, rect =plate
image_rgb,rect_refine = self.finemappingVertical(plate,rect)
res,confidence = self.recognizeOne(image_rgb)
res_set.append([res,confidence,rect_refine])
recognizeOne()
def recognizeOne(self,src):
x_tempx = src
x_temp = cv2.resize(x_tempx,( 164,48))
x_temp = x_temp.transpose(1, 0, 2)
y_pred = self.modelSeqRec.predict(np.array([x_temp]))
y_pred = y_pred[:,2:,:]
return self.fastdecode(y_pred)
1.将前面的(136, 36)图像resize成(164, 48)
2.将图像转置,输入
**(9)**modelSecRec模型
基于GRU的序列模型从OCR模型中修改的网络模型
model_sec_rec函数
def model_seq_rec(self,model_path):
width, height, n_len, n_class = 164, 48, 7, len(chars)+ 1
rnn_size = 256
input_tensor = Input((164, 48, 3))
x = input_tensor
base_conv = 32
for i in range(3):
x = Conv2D(base_conv * (2 ** (i)), (3, 3))(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=(2, 2))(x)
conv_shape = x.get_shape()
x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2] * conv_shape[3])))(x)
x = Dense(32)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
gru_1 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru1')(x)
gru_1b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru1_b')(x)
gru1_merged = add([gru_1, gru_1b])
gru_2 = GRU(rnn_size, return_sequences=True, kernel_initializer='he_normal', name='gru2')(gru1_merged)
gru_2b = GRU(rnn_size, return_sequences=True, go_backwards=True, kernel_initializer='he_normal', name='gru2_b')(gru1_merged)
x = concatenate([gru_2, gru_2b])
x = Dropout(0.25)(x)
x = Dense(n_class, kernel_initializer='he_normal', activation='softmax')(x)
base_model = Model(inputs=input_tensor, outputs=x)
base_model.load_weights(model_path)
return base_model
model_path为模型weights文件路径
ocr部分的网络模型(keras模型)
输入层:164*48*3的tensor
输出层:长度为7 的tensor,类别有len(chars)+1种
chars:
chars = [u"京", u"沪", u"津", u"渝", u"冀", u"晋", u"蒙", u"辽", u"吉", u"黑", u"苏", u"浙", u"皖", u"闽", u"赣", u"鲁", u"豫", u"鄂", u"湘", u"粤", u"桂",
u"琼", u"川", u"贵", u"云", u"藏", u"陕", u"甘", u"青", u"宁", u"新", u"0", u"1", u"2", u"3", u"4", u"5", u"6", u"7", u"8", u"9", u"A",
u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"J", u"K", u"L", u"M", u"N", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X",
u"Y", u"Z",u"港",u"学",u"使",u"警",u"澳",u"挂",u"军",u"北",u"南",u"广",u"沈",u"兰",u"成",u"济",u"海",u"民",u"航",u"空"
]
网络结构是三层卷积神经网络(CNN),以及四层内控循环单元(GRU)组成