深度学习-YOLOV3在VOC07数据集测试

github:https://github.com/wucj123/YOLOV3#yolov3

训练集

来自voc07,The PASCAL Visual Object Classification,此数据集分训练集与测试集,其中训练集,图片5011张,测试集图片4952张。

训练过程

去训练集中10%用作验证集,

阶段一:50个epoch,lr=1e-3,batch_size=32,耗时350s左右/epoch。

阶段二:100个epoch,lr=1e-4,batch_size=10,设置ReduceLROnPlateau,每3个epoch,val-loss如果不下降,则lr降为原来的0.1;设置EarlyStopping,如果10个epoch,val-loss不下降,则停止训练,保存weight。

训练结果

在val-loss降到25左右,提前停止训练。各类AP(iou=0.5)以及mAP如下所示

深度学习-YOLOV3在VOC07数据集测试_第1张图片深度学习-YOLOV3在VOC07数据集测试_第2张图片深度学习-YOLOV3在VOC07数据集测试_第3张图片

分析

分类效果比较差的类为chair与pottedplant,还在分析原因中,各位大神,知道原因的,欢迎评论,谢谢

è¿éåå¾çæè¿°

今天看到yolov2论文里面测试结果,其中chair与plant的AP分别为36.2与28.9,而yolov3中针对chair与plant,我目前测试结果为0.55与0.44,本身已有较大提升,所以原因可能在于数据集。

你可能感兴趣的:(深度学习)