Python数据集切分

在处理数据过程中经常要把数据集切分为训练集和测试集,因此记录一下切分代码。

'''
data:数据集
test_ratio:测试机占比
如果data为numpy.numpy.ndarray直接使用此代码
如果data为pandas.DatFrame类型则
    return data[train_indices],data[test_indices]
修改为
    return data.iloc[train_indices],data.iloc[test_indices]
'''
def split_train(data,test_ratio):
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

测试代码如下:

import numpy as np
import pandas as pd
data=np.random.randint(100,size=[25,4])
print(data)

结果如下:
Python数据集切分_第1张图片
Python数据集切分_第2张图片
从上图可以看出,原数据集按照5:1被随机分为两部分。但是此种方法存在一个缺点–每次调用次函数切分同一个数据集切分出来的结果都不一样,因此常在np.random.permutation(len(data))先调用np.random.seed(int)函数,来确保每次切分来的结果相同。因此将上述函数改为:

def split_train(data,test_ratio):
    np.random.seed(43)
    shuffled_indices=np.random.permutation(len(data))
    test_set_size=int(len(data)*test_ratio)
    test_indices =shuffled_indices[:test_set_size]
    train_indices=shuffled_indices[test_set_size:]
    return data[train_indices],data[test_indices]

这个函数np.random.seed(43)当参数为同一整数时产生的随机数相同。

你可能感兴趣的:(机器学习)