- Python AI教程之二十一:监督学习之支持向量机(SVM)算法
潜洋
人工智能Python中级支持向量机算法机器学习python
支持向量机(SVM)算法支持向量机(SVM)是一种功能强大的机器学习算法,广泛用于线性和非线性分类以及回归和异常值检测任务。SVM具有很强的适应性,适用于各种应用,例如文本分类、图像分类、垃圾邮件检测、笔迹识别、基因表达分析、人脸检测和异常检测。SVM特别有效,因为它们专注于寻找目标特征中不同类别之间的最大分离超平面,从而使其对二分类和多分类都具有鲁棒性。在本大纲中,我们将探讨支持向量机(SVM)
- Day25_0.1基础学习MATLAB学习小技巧总结(25)——四维图形的可视化
非常规定义M
0.1基础学习MATLAB学习matlab开发语言SIMULINK数学建模
利用空闲时间把碎片化的MATLAB知识重新系统的学习一遍,为了在这个过程中加深印象,也为了能够有所足迹,我会把自己的学习总结发在专栏中,以便学习交流。参考书目:1、《MATLAB基础教程(第三版)(薛山)》2、《MATLABR2020a完全自学一本通》之前的章节都是基础的数据运算用法,对于功课来说更加重要的内容是建模、绘图、观察数据趋势,接下来我会结合自己的使用经验,来为大家分享绘图、建模使用的小
- 分类算法可视化方法
dundunmm
数据挖掘分类数据挖掘人工智能可视化
可视化方法可以用于帮助理解分类算法的决策边界、性能和在不同数据集上的行为。下面列举几个常见的可视化方法。1.决策边界可视化这种方法用于可视化不同分类算法在二维特征空间中如何分隔不同类别。对于理解决策树、支持向量机(SVM)、逻辑回归和k近邻(k-NN)等模型的行为非常有用。importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasets
- 时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM 单变量和多变量 含基础模型
机器不会学习CL
智能优化算法时间序列预测支持向量机matlab算法
时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基础模型文章目录一、基本原理1.问题定义2.数据准备3.SVM模型构建4.粒子群优化(PSO)5.优化与模型训练6.模型评估与预测7.流程总结8.MATLAB实现概述二、实验结果三、核心代码四、代码获取五、总结时序预测|基于粒子群优化支持向量机的时间序列预测Matlab程序PSO-SVM单变量和多变量含基
- 【ML】支持向量机SVM及Python实现(详细)
2401_84009698
程序员支持向量机python算法
fromsklearn.preprocessingimportStandardScalerfrommatplotlib.colorsimportListedColormapfromsklearn.svmimportSVC###2.1加载数据样本加载样本数据及其分类标签iris=datasets.load_iris()X=iris.data[:,[2,3]]#按花瓣划分#X=iris.data[:,
- 鸿蒙原生开发——轻内核A核源码分析系列三 物理内存(2)
OpenHarmony_小贾
鸿蒙开发HarmonyOSOpenHarmonyharmonyosopenharmony移动开发程序人生鸿蒙开发
3.1.2.3函数OsVmPhysLargeAlloc当执行到这个函数时,说明空闲链表上的单个内存页节点的大小已经不能满足要求,超过了第9个链表上的内存页节点的大小了。⑴处计算需要申请的内存大小。⑵从最大的链表上进行遍历每一个内存页节点。⑶根据每个内存页的开始内存地址,计算需要的内存的结束地址,如果超过内存段的大小,则继续遍历下一个内存页节点。⑷处此时paStart表示当前内存页的结束地址,接下来
- 鸿蒙轻内核A核源码分析系列四(3) 虚拟内存
OpenHarmony_小贾
OpenHarmonyHarmonyOS鸿蒙开发harmonyosOpenHarmony鸿蒙内核移动开发驱动开发系统开发
4.2函数LOS_RegionAlloc函数LOS_RegionAlloc用于从地址空间中申请空闲的虚拟地址区间。参数较多,LosVmSpace*vmSpace指定虚拟地址空间,VADDR_Tvaddr指定虚拟地址,当为空时,从映射区申请虚拟地址;当不为空时,使用该虚拟地址。如果该虚拟地址已经被映射,会先相应的解除映射处理等。size_tlen指定要申请的地区区间的长度。UINT32regionF
- Django Admin管理后台导入CSV
背着吉他去流浪
django服务器python
修改管理模型,代码如下:classCsvImportForm(forms.Form):csv_file=forms.FileField()@admin.register(Hero)classHeroAdmin(admin.ModelAdmin,ExportCsvMixin):...change_list_template="entities/heroes_changelist.html"defge
- TEE是Trusted Execution Environment 的解释
weixin_38503885
TEE是TrustedExecutionEnvironment的缩写简称,是可信执行环境的简称,在目前移动安全领域,TEE默认就是指的基于ARMtrustzone技术的TEE,其实在芯片架构层面,TEE应该包含下面三部分:1.利用intelTXT或AMD的SVM均可提供TEE,即基于处理器CPU的特殊指令,提供动态信任根DRTM服务,为敏感应用或数据提供可信执行环境;2.利用ARMTrustZon
- AI模型:追求全能还是专精?
Lill_bin
杂谈人工智能分布式zookeeper机器学习游戏
AI模型简介人工智能(AI)模型是人工智能系统的核心,它们是经过训练的算法,能够执行特定的任务,如图像识别、自然语言处理、游戏玩法、预测分析等。AI模型的类型很多,可以根据其功能和应用场景进行分类。常见的AI模型类型包括:监督学习模型:这些模型通过训练数据集学习,数据集中包含了输入和对应的输出标签。例子包括决策树、支持向量机(SVM)、神经网络等。无监督学习模型:这些模型处理没有标签的数据,目的是
- MATLAB学习笔记5
好好学习的不知名程序员
matlab学习笔记
1.函数的创建与使用1.1创建简单的函数在MATLAB中,你可以创建自己的函数来执行特定任务。函数通常保存在一个`.m`文件中,文件名需要和函数名相同。创建一个计算两点之间距离的函数`distance.m`functiond=distance(x1,y1,x2,y2)%计算两点之间的欧几里得距离d=sqrt((x2-x1)^2+(y2-y1)^2);end调用函数:使用函数名并传入参数即可调用函数
- 分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出
机器不会学习CL
分类预测智能优化算法分类支持向量机matlab
分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM多特征输入多类别输出文章目录一、基本原理1.最小二乘支持向量机(LSSVM)LSSVM的基本步骤:2.鲸鱼优化算法(WOA)WOA的基本步骤:3.WOA-LSSVM的结合流程结合的流程如下:总结二、实验结果三、核心代码四、代码获取五、总结分类预测|基于鲸鱼优化WOA最小二乘支持向量机LSSVM的
- 【HarmonyOS NEXT应用开发】案例103:基于JSVM创建引擎执行JS代码并销毁
青少年编程作品集
javascriptmicrosoft开发语言华为云harmonyos华为华为od
场景描述通过JSVM,可以在应用运行期间直接执行一段动态加载的JS代码。也可以选择将一些对性能、底层系统调用有较高要求的核心功能用C/C++实现并将C++方法注册到JS侧,在JS代码中直接调用,提高应用的执行效率。功能描述通过createJsCore方法来创建一个新的JS基础运行时环境,并通过该方法获得一个虚拟机ID,通过evalUateJS方法使用虚拟机ID对应的运行环境来运行JS代码,在JS代
- 自然语言处理系列五十》文本分类算法》SVM支持向量机算法原理
陈敬雷-充电了么-CEO兼CTO
算法大数据人工智能算法自然语言处理分类nlpai人工智能chatgpt
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机》代码实战总结自然语言处理系列五十SVM支持向量机》算法原理SVM支持向量机在文本分类的应用场景中,相比其他机器学习算法有更好的效果。下面介绍其原理,并用SparkMLlib机器
- 鸿蒙(API 12 Beta2版)NDK开发【JSVM-API简介】
移动开发技术栈
鸿蒙开发harmonyos华为鸿蒙系统鸿蒙NDK模块加载jsvm
JSVM-API简介场景介绍HarmonyOSJSVM-API是基于标准JS引擎提供的一套稳定的ABI,为开发者提供了较为完整的JS引擎能力,包括创建和销毁引擎,执行JS代码,JS/C++交互等关键能力。通过JSVM-API,开发者可以在应用运行期间直接执行一段动态加载的JS代码。也可以选择将一些对性能、底层系统调用有较高要求的核心功能用C/C++实现并将C++方法注册到JS侧,在JS代码中直接调
- HarmonyOS开发规范:JSVM-API接口总结
冲浪王子_浪浪
HarmonyOSOpenHarmony鸿蒙开发前端鸿蒙华为harmonyoshtml移动开发鸿蒙系统
JSVM_Status是一个枚举数据类型,表示JSVM-API接口返回的状态信息。每当调用一个JSVM-API函数,都会返回该值,表示操作成功与否的相关信息。typedefenum{JSVM_OK,JSVM_INVALID_ARG,JSVM_OBJECT_EXPECTED,JSVM_STRING_EXPECTED,JSVM_NAME_EXPECTED,JSVM_FUNCTION_EXPECTED,
- 每天一个数据分析题(五百一十二)- 数据标准化
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在完整的机器学习流程中,数据标准化(DataStandardization)一直是一项重要的处理流程。不同模型对于数据是否标准化的敏感程度不同,以下哪个模型对变量是否标准化不敏感?A.决策树B.KNNC.K-MeansD.SVM数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,S
- 回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
机器不会学习CL
回归预测智能优化算法回归cnn支持向量机
回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练(LSSVM)5.模型评估和优化6.预测总结二、实验结果三、核心代码四、代码获取五、总结回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSV
- 机器学习:svm算法原理的优缺点和适应场景
夜清寒风
支持向量机算法机器学习
1、概述:基本原理:间隔(Margin):SVM试图找到一个超平面,这个超平面不仅能够区分不同的类别,而且具有最大的间隔。间隔是数据点到超平面的最近距离。支持向量(SupportVectors):这些是距离超平面最近的数据点,它们决定了超平面的位置和方向。支持向量机(SVM)是一种在机器学习领域广泛使用的监督学习模型,它通过找到数据点之间的最优超平面来进行分类或回归分析。以下是SVM算法的一些优缺
- 深度学习速通系列:贝叶思&SVM
Ven%
支持向量机人工智能深度学习算法机器学习
贝叶斯(Bayesian)方法和支持向量机(SVM,SupportVectorMachine)是两种不同的机器学习算法,它们在解决分类和回归问题时有着不同的原理和应用场景贝叶斯方法:贝叶斯方法基于贝叶斯定理,这是一种利用已知信息(先验概率)来预测未知事件(后验概率)的概率方法。它通常用于分类问题,特别是当数据集较小或存在类别不平衡时。贝叶斯方法可以处理不确定性,并且可以通过增加新的数据来更新先验概
- 【ShuQiHere】《机器学习的进化史『下』:从神经网络到深度学习的飞跃》
ShuQiHere
机器学习深度学习神经网络
【ShuQiHere】引言:神经网络与深度学习的兴起在上篇文章中,我们回顾了机器学习的起源与传统模型的发展历程,如线性回归、逻辑回归和支持向量机(SVM)。然而,随着数据规模的急剧增长和计算能力的提升,传统模型在处理复杂问题时显得力不从心。在这种背景下,神经网络重新进入了研究者们的视野,并逐步演变为深度学习,成为解决复杂问题的强大工具。今天,我们将进一步探索从神经网络到深度学习的进化历程,揭示这些
- 使用SVM进行评论情感分析
github_czy
支持向量机机器学习人工智能
importpandasaspdfromsklearn.model_selectionimporttrain_test_splitfromsklearn.feature_extraction.textimportTfidfVectorizerfromsklearn.svmimportSVCfromsklearn.metricsimportaccuracy_score,precision_score
- 智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序 【优化算法可以替换成其他优化方法】
机器不会学习CL
智能优化算法智能优化特征选择算法支持向量机matlab
智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】文章目录一、PO基本原理基本原理基本流程示例应用二、实验结果三、核心代码四、代码获取五、总结智能优化特征选择|基于鹦鹉优化(2024年新出优化算法)的特征选择(分类器选用的是SVM)研究Matlab程序【优化算法可以替换成其他优化方法】一、PO基本原理鹦鹉
- KVM虚拟机命令行常用操作
文静小土豆
linux运维redis
1,首先验证CPU是否支持虚拟化,输入有vmx或svm就支持,支持虚拟化则就支持KVMcat/proc/cpuinfo|egrep'vmx|svm'2,查看KVM模块是否加载lsmod|grepkvm#kvm_intel1700860#kvm5663401kvm_intel#irqbypass135031kvm3,安装KVM虚拟机yum-yinstallqemu-kvmqemu-imglibvir
- 回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM 多特征输入单输出 高引用先用先创新
机器不会学习CL
回归预测智能优化算法回归支持向量机matlab
回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新文章目录前言回归预测|基于北方苍鹰优化支持向量机的数据回归预测Matlab程序NGO-SVM多特征输入单输出高引用先用先创新一、NGO-SVM模型1.北方苍鹰优化算法(NGO)的原理2.支持向量机(SVM)的原理3.NGO-SVM回归预测模型的结合总结二、实验结果三、核心代码四、代码获取
- 四十一、【人工智能】【机器学习】- Bayesian Logistic Regression算法模型
暴躁的大熊
人工智能人工智能机器学习算法
系列文章目录第一章【机器学习】初识机器学习第二章【机器学习】【监督学习】-逻辑回归算法(LogisticRegression)第三章【机器学习】【监督学习】-支持向量机(SVM)第四章【机器学习】【监督学习】-K-近邻算法(K-NN)第五章【机器学习】【监督学习】-决策树(DecisionTrees)第六章【机器学习】【监督学习】-梯度提升机(GradientBoostingMachine,GBM
- IDEA快捷键
糯米小麻花啊
intellij-ideajavaide
自动代码查询快捷键其他快捷键调试快捷键重构十大IntellijIDEA快捷键1智能提示2重构3代码生成4编辑5查找打开6其他辅助自动代码常用的有fori/sout/psvm+Tab即可生成循环、System.out、main方法等boilerplate样板代码。例如要输入for(Useruser:users)只需输入user.for+Tab;再比如,要输入Datebirthday=user.get
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 【机器学习】支持向量机 | 支持向量机理论全梳理 对偶问题转换,核方法,软间隔与过拟合
Qodicat
支持向量机机器学习算法
支持向量机走的路和之前介绍的模型不同之前介绍的模型更趋向于进行函数的拟合,而支持向量机属于直接分割得到我们最后要求的内容1支持向量机SVM基本原理当我们要用一条线(或平面、超平面)将不同类别的点分开时,我们希望这条线尽可能地远离最靠近它的点。这些最靠近线的点被称为支持向量。而这条线到最靠近它的点的距离被称为间隔。支持向量机就是要找到一个最大间隔的线(或平面、超平面),这样可以更好地区分不同类别的点
- MATLAB|【免费】概率神经网络的分类预测--基于PNN的变压器故障诊断
电力程序小学童
机器预测matlab神经网络分类预测
目录主要内容部分代码结果一览下载链接主要内容《MATLAB神经网络43个案例分析》共有43章,内容涵盖常见的神经网络(BP、RBF、SOM、Hopfield、Elman、LVQ、Kohonen、GRNN、NARX等)以及相关智能算法(SVM、决策树、随机森林、极限学习机等)。同时,部分章节也涉及了常见的优化算法(遗传算法、蚁群算法等)与神经网络的结合问题。此外,《MATLAB神经网络43个案例分析
- Dom
周华华
JavaScripthtml
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 【Spark九十六】RDD API之combineByKey
bit1129
spark
1. combineByKey函数的运行机制
RDD提供了很多针对元素类型为(K,V)的API,这些API封装在PairRDDFunctions类中,通过Scala隐式转换使用。这些API实现上是借助于combineByKey实现的。combineByKey函数本身也是RDD开放给Spark开发人员使用的API之一
首先看一下combineByKey的方法说明:
- msyql设置密码报错:ERROR 1372 (HY000): 解决方法详解
daizj
mysql设置密码
MySql给用户设置权限同时指定访问密码时,会提示如下错误:
ERROR 1372 (HY000): Password hash should be a 41-digit hexadecimal number;
问题原因:你输入的密码是明文。不允许这么输入。
解决办法:用select password('你想输入的密码');查询出你的密码对应的字符串,
然后
- 路漫漫其修远兮 吾将上下而求索
周凡杨
学习 思索
王国维在他的《人间词话》中曾经概括了为学的三种境界古今之成大事业、大学问者,罔不经过三种之境界。“昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境界也。“衣带渐宽终不悔,为伊消得人憔悴。”此第二境界也。“众里寻他千百度,蓦然回首,那人却在灯火阑珊处。”此第三境界也。学习技术,这也是你必须经历的三种境界。第一层境界是说,学习的路是漫漫的,你必须做好充分的思想准备,如果半途而废还不如不要开始。这里,注
- Hadoop(二)对话单的操作
朱辉辉33
hadoop
Debug:
1、
A = LOAD '/user/hue/task.txt' USING PigStorage(' ')
AS (col1,col2,col3);
DUMP A;
//输出结果前几行示例:
(>ggsnPDPRecord(21),,)
(-->recordType(0),,)
(-->networkInitiation(1),,)
- web报表工具FineReport常用函数的用法总结(日期和时间函数)
老A不折腾
finereport报表工具web开发
web报表工具FineReport常用函数的用法总结(日期和时间函数)
说明:凡函数中以日期作为参数因子的,其中日期的形式都必须是yy/mm/dd。而且必须用英文环境下双引号(" ")引用。
DATE
DATE(year,month,day):返回一个表示某一特定日期的系列数。
Year:代表年,可为一到四位数。
Month:代表月份。
- c++ 宏定义中的##操作符
墙头上一根草
C++
#与##在宏定义中的--宏展开 #include <stdio.h> #define f(a,b) a##b #define g(a) #a #define h(a) g(a) int main() { &nbs
- 分析Spring源代码之,DI的实现
aijuans
springDI现源代码
(转)
分析Spring源代码之,DI的实现
2012/1/3 by tony
接着上次的讲,以下这个sample
[java]
view plain
copy
print
- for循环的进化
alxw4616
JavaScript
// for循环的进化
// 菜鸟
for (var i = 0; i < Things.length ; i++) {
// Things[i]
}
// 老鸟
for (var i = 0, len = Things.length; i < len; i++) {
// Things[i]
}
// 大师
for (var i = Things.le
- 网络编程Socket和ServerSocket简单的使用
百合不是茶
网络编程基础IP地址端口
网络编程;TCP/IP协议
网络:实现计算机之间的信息共享,数据资源的交换
协议:数据交换需要遵守的一种协议,按照约定的数据格式等写出去
端口:用于计算机之间的通信
每运行一个程序,系统会分配一个编号给该程序,作为和外界交换数据的唯一标识
0~65535
查看被使用的
- JDK1.5 生产消费者
bijian1013
javathread生产消费者java多线程
ArrayBlockingQueue:
一个由数组支持的有界阻塞队列。此队列按 FIFO(先进先出)原则对元素进行排序。队列的头部 是在队列中存在时间最长的元素。队列的尾部 是在队列中存在时间最短的元素。新元素插入到队列的尾部,队列检索操作则是从队列头部开始获得元素。
ArrayBlockingQueue的常用方法:
- JAVA版身份证获取性别、出生日期及年龄
bijian1013
java性别出生日期年龄
工作中需要根据身份证获取性别、出生日期及年龄,且要还要支持15位长度的身份证号码,网上搜索了一下,经过测试好像多少存在点问题,干脆自已写一个。
CertificateNo.java
package com.bijian.study;
import java.util.Calendar;
import
- 【Java范型六】范型与枚举
bit1129
java
首先,枚举类型的定义不能带有类型参数,所以,不能把枚举类型定义为范型枚举类,例如下面的枚举类定义是有编译错的
public enum EnumGenerics<T> { //编译错,提示枚举不能带有范型参数
OK, ERROR;
public <T> T get(T type) {
return null;
- 【Nginx五】Nginx常用日志格式含义
bit1129
nginx
1. log_format
1.1 log_format指令用于指定日志的格式,格式:
log_format name(格式名称) type(格式样式)
1.2 如下是一个常用的Nginx日志格式:
log_format main '[$time_local]|$request_time|$status|$body_bytes
- Lua 语言 15 分钟快速入门
ronin47
lua 基础
-
-
单行注释
-
-
[[
[多行注释]
-
-
]]
-
-
-
-
-
-
-
-
-
-
-
1.
变量 & 控制流
-
-
-
-
-
-
-
-
-
-
num
=
23
-
-
数字都是双精度
str
=
'aspythonstring'
- java-35.求一个矩阵中最大的二维矩阵 ( 元素和最大 )
bylijinnan
java
the idea is from:
http://blog.csdn.net/zhanxinhang/article/details/6731134
public class MaxSubMatrix {
/**see http://blog.csdn.net/zhanxinhang/article/details/6731134
* Q35
求一个矩阵中最大的二维
- mongoDB文档型数据库特点
开窍的石头
mongoDB文档型数据库特点
MongoDD: 文档型数据库存储的是Bson文档-->json的二进制
特点:内部是执行引擎是js解释器,把文档转成Bson结构,在查询时转换成js对象。
mongoDB传统型数据库对比
传统类型数据库:结构化数据,定好了表结构后每一个内容符合表结构的。也就是说每一行每一列的数据都是一样的
文档型数据库:不用定好数据结构,
- [毕业季节]欢迎广大毕业生加入JAVA程序员的行列
comsci
java
一年一度的毕业季来临了。。。。。。。。
正在投简历的学弟学妹们。。。如果觉得学校推荐的单位和公司不适合自己的兴趣和专业,可以考虑来我们软件行业,做一名职业程序员。。。
软件行业的开发工具中,对初学者最友好的就是JAVA语言了,网络上不仅仅有大量的
- PHP操作Excel – PHPExcel 基本用法详解
cuiyadll
PHPExcel
导出excel属性设置//Include classrequire_once('Classes/PHPExcel.php');require_once('Classes/PHPExcel/Writer/Excel2007.php');$objPHPExcel = new PHPExcel();//Set properties 设置文件属性$objPHPExcel->getProperties
- IBM Webshpere MQ Client User Issue (MCAUSER)
darrenzhu
IBMjmsuserMQMCAUSER
IBM MQ JMS Client去连接远端MQ Server的时候,需要提供User和Password吗?
答案是根据情况而定,取决于所定义的Channel里面的属性Message channel agent user identifier (MCAUSER)的设置。
http://stackoverflow.com/questions/20209429/how-mca-user-i
- 网线的接法
dcj3sjt126com
一、PC连HUB (直连线)A端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 二、PC连PC (交叉线)A端:(568A): 白绿,绿,白橙,蓝,白蓝,橙,白棕,棕; B端:(标准568B):白橙,橙,白绿,蓝,白蓝,绿,白棕,棕。 三、HUB连HUB&nb
- Vimium插件让键盘党像操作Vim一样操作Chrome
dcj3sjt126com
chromevim
什么是键盘党?
键盘党是指尽可能将所有电脑操作用键盘来完成,而不去动鼠标的人。鼠标应该说是新手们的最爱,很直观,指哪点哪,很听话!不过常常使用电脑的人,如果一直使用鼠标的话,手会发酸,因为操作鼠标的时候,手臂不是在一个自然的状态,臂肌会处于绷紧状态。而使用键盘则双手是放松状态,只有手指在动。而且尽量少的从鼠标移动到键盘来回操作,也省不少事。
在chrome里安装 vimium 插件
- MongoDB查询(2)——数组查询[六]
eksliang
mongodbMongoDB查询数组
MongoDB查询数组
转载请出自出处:http://eksliang.iteye.com/blog/2177292 一、概述
MongoDB查询数组与查询标量值是一样的,例如,有一个水果列表,如下所示:
> db.food.find()
{ "_id" : "001", "fruits" : [ "苹
- cordova读写文件(1)
gundumw100
JavaScriptCordova
使用cordova可以很方便的在手机sdcard中读写文件。
首先需要安装cordova插件:file
命令为:
cordova plugin add org.apache.cordova.file
然后就可以读写文件了,这里我先是写入一个文件,具体的JS代码为:
var datas=null;//datas need write
var directory=&
- HTML5 FormData 进行文件jquery ajax 上传 到又拍云
ileson
jqueryAjaxhtml5FormData
html5 新东西:FormData 可以提交二进制数据。
页面test.html
<!DOCTYPE>
<html>
<head>
<title> formdata file jquery ajax upload</title>
</head>
<body>
<
- swift appearanceWhenContainedIn:(version1.2 xcode6.4)
啸笑天
version
swift1.2中没有oc中对应的方法:
+ (instancetype)appearanceWhenContainedIn:(Class <UIAppearanceContainer>)ContainerClass, ... NS_REQUIRES_NIL_TERMINATION;
解决方法:
在swift项目中新建oc类如下:
#import &
- java实现SMTP邮件服务器
macroli
java编程
电子邮件传递可以由多种协议来实现。目前,在Internet 网上最流行的三种电子邮件协议是SMTP、POP3 和 IMAP,下面分别简单介绍。
◆ SMTP 协议
简单邮件传输协议(Simple Mail Transfer Protocol,SMTP)是一个运行在TCP/IP之上的协议,用它发送和接收电子邮件。SMTP 服务器在默认端口25上监听。SMTP客户使用一组简单的、基于文本的
- mongodb group by having where 查询sql
qiaolevip
每天进步一点点学习永无止境mongo纵观千象
SELECT cust_id,
SUM(price) as total
FROM orders
WHERE status = 'A'
GROUP BY cust_id
HAVING total > 250
db.orders.aggregate( [
{ $match: { status: 'A' } },
{
$group: {
- Struts2 Pojo(六)
Luob.
POJOstrust2
注意:附件中有完整案例
1.采用POJO对象的方法进行赋值和传值
2.web配置
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee&q
- struts2步骤
wuai
struts
1、添加jar包
2、在web.xml中配置过滤器
<filter>
<filter-name>struts2</filter-name>
<filter-class>org.apache.st