(1)第一种方法,递归暴力解决。
class Solution {
public:
int dfs(vector>& grid, int i, int j){
if (i == grid.size() || j == grid[0].size()){
return INT_MAX; //超出范围的时候,返回一个最大值,一开始写成了if (i == grid.size() || j == grid.size())
}
if (i == grid.size() - 1 && j == grid[0].size()-1){
return grid[i][j]; //递归终止条件
}
return grid[i][j] + min(dfs(grid, i + 1, j), dfs(grid, i, j+1));
}
int minPathSum(vector>& grid) {
return dfs(grid, 0, 0);
}
};
int main(){
vector> grid = { { 1, 3, 1 }, { 1, 5, 1 }, { 4, 2, 1 } };
Solution solution;
int res = solution.minPathSum(grid);
return 0;
}
(2)递归+二维数组记忆搜索
class Solution {
public:
int DFS(vector>& grid, int i, int j, vector>& memo){
if (i == grid.size() || j == grid[0].size()) return INT_MAX;
if (i == grid.size() - 1 && j == grid[0].size() - 1) return grid[i][j];
if (memo[i][j] == -1) memo[i][j] = grid[i][j] + min(DFS(grid, i + 1, j, memo), DFS(grid, i, j + 1, memo));
return memo[i][j];
}
int minPathSum(vector>& grid) {
int m = grid.size();
int n = grid[0].size();
vector> memo = vector>(m, vector(n, -1));
return DFS(grid, 0, 0, memo);
}
};
int main(){
vector> grid = { { 1, 3, 1 }, { 1, 5, 1 }, { 4, 2, 1 } };
Solution solution;
int res = solution.minPathSum(grid);
return 0;
}
(3)用一维数组做记忆搜索似乎不能用递归,只能用动态规划。
错误1
class Solution {
public:
int minPathSum(vector>& grid) {
vectordp = vector(grid[0].size(), 0);
for (int i = grid.size() - 1; i >= 0; i--){
for (int j = grid[0].size()-1; j >= 0; j--){
if (i == grid.size() - 1 && j != grid[0].size() - 1)
dp[j]= grid[i][j] + dp[j + 1];
if (i != grid.size() - 1 && j == grid[0].size() - 1)
dp[j] = grid[i][j] + dp[j];
if (i != grid.size() - 1 && j != grid[0].size() - 1)
dp[j] =grid[i][j] + min(dp[j], dp[j + 1]);
else
dp[j] = grid[i][j];//右下角起始元素 //错误之处,if else,这行用个else是上个if只要不满足就执行这条语句
//而我们的意思是上边那几个if都不满足的情况下才执行这条语句。
}
}
return dp[0];
}
};
改正确
class Solution {
public:
int minPathSum(vector>& grid) {
vectordp = vector(grid[0].size(), 0);
for (int i = grid.size() - 1; i >= 0; i--){
for (int j = grid[0].size()-1; j >= 0; j--){
if (i == grid.size() - 1 && j != grid[0].size() - 1)
dp[j]= grid[i][j] + dp[j + 1];
else if (i != grid.size() - 1 && j == grid[0].size() - 1)
dp[j] = grid[i][j] + dp[j];
else if (i != grid.size() - 1 && j != grid[0].size() - 1)
dp[j] = grid[i][j]+ min(dp[j], dp[j + 1]);
else
dp[j] = grid[i][j];//右下角起始元素 //错误之处,if else,这行用个else是上个if只要不满足就执行这条语句
//而我们的意思是上边那几个if都不满足的情况下
}
}
return dp[0];
}
};