import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
import org.apache.hadoop.hbase.client.{HBaseAdmin, Put, Result}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
//import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
//import org.apache.hadoop.mapreduce.Job
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
/**
* Created by blockchain on 18-9-9 下午3:45 in Beijing.
*/
object SparkHBaseRDD {
def main(args: Array[String]) {
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
val spark = SparkSession.builder().appName("SparkHBaseRDD").getOrCreate()
val sc = spark.sparkContext
val tablename = "SparkHBase"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum","localhost") //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181") //设置zookeeper连接端口,默认2181
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tablename)
// 初始化job,TableOutputFormat 是 org.apache.hadoop.hbase.mapred 包下的
val jobConf = new JobConf(hbaseConf)
jobConf.setOutputFormat(classOf[TableOutputFormat])
val indataRDD = sc.makeRDD(Array("2,jack,16", "1,Lucy,15", "5,mike,17", "3,Lily,14"))
val rdd = indataRDD.map(_.split(',')).map{ arr=>
/*一个Put对象就是一行记录,在构造方法中指定主键
* 所有插入的数据 须用 org.apache.hadoop.hbase.util.Bytes.toBytes 转换
* Put.addColumn 方法接收三个参数:列族,列名,数据*/
val put = new Put(Bytes.toBytes(arr(0)))
put.addColumn(Bytes.toBytes("cf1"),Bytes.toBytes("name"),Bytes.toBytes(arr(1)))
put.addColumn(Bytes.toBytes("cf1"),Bytes.toBytes("age"),Bytes.toBytes(arr(2)))
(new ImmutableBytesWritable, put)
}
rdd.saveAsHadoopDataset(jobConf)
spark.stop()
}
}
在 HBase shell 中 查看写入的数据
hbase(main):005:0* scan 'SparkHBase'
ROW COLUMN+CELL
1 column=cf1:age, timestamp=1536494344379, value=15
1 column=cf1:name, timestamp=1536494344379, value=Lucy
2 column=cf1:age, timestamp=1536494344380, value=16
2 column=cf1:name, timestamp=1536494344380, value=jack
3 column=cf1:age, timestamp=1536494344379, value=14
3 column=cf1:name, timestamp=1536494344379, value=Lily
5 column=cf1:age, timestamp=1536494344380, value=17
5 column=cf1:name, timestamp=1536494344380, value=mike
4 row(s) in 0.0940 seconds
hbase(main):006:0>
如上所示,写入成功。
import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor, TableName}
import org.apache.hadoop.hbase.client.{HBaseAdmin, Put, Result}
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
//import org.apache.hadoop.hbase.mapreduce.TableOutputFormat
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
//import org.apache.hadoop.mapreduce.Job
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.SparkSession
/**
* Created by blockchain on 18-9-9 下午3:45 in Beijing.
*/
object SparkHBaseRDD {
def main(args: Array[String]) {
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
val spark = SparkSession.builder().appName("SparkHBaseRDD").getOrCreate()
val sc = spark.sparkContext
val tablename = "SparkHBase"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set("hbase.zookeeper.quorum","localhost") //设置zooKeeper集群地址,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
hbaseConf.set("hbase.zookeeper.property.clientPort", "2181") //设置zookeeper连接端口,默认2181
hbaseConf.set(TableInputFormat.INPUT_TABLE, tablename)
// 如果表不存在,则创建表
val admin = new HBaseAdmin(hbaseConf)
if (!admin.isTableAvailable(tablename)) {
val tableDesc = new HTableDescriptor(TableName.valueOf(tablename))
admin.createTable(tableDesc)
}
//读取数据并转化成rdd TableInputFormat 是 org.apache.hadoop.hbase.mapreduce 包下的
val hBaseRDD = sc.newAPIHadoopRDD(hbaseConf, classOf[TableInputFormat],
classOf[ImmutableBytesWritable],
classOf[Result])
hBaseRDD.foreach{ case (_ ,result) =>
//获取行键
val key = Bytes.toString(result.getRow)
//通过列族和列名获取列
val name = Bytes.toString(result.getValue("cf1".getBytes,"name".getBytes))
val age = Bytes.toString(result.getValue("cf1".getBytes,"age".getBytes))
println("Row key:"+key+"\tcf1.Name:"+name+"\tcf1.Age:"+age)
}
admin.close()
spark.stop()
}
}
输出如下
Row key:1 cf1.Name:Lucy cf1.Age:15
Row key:2 cf1.Name:jack cf1.Age:16
Row key:3 cf1.Name:Lily cf1.Age:14
Row key:5 cf1.Name:mike cf1.Age:17
友情提示:JDBC方式 访问 Phoenix
Apache Spark Plugin
部署Maven:https://blog.csdn.net/yitengtongweishi/article/details/81946562
需要添加的依赖如下:
org.apache.phoenix
phoenix-core
${phoenix.version}
org.apache.phoenix
phoenix-spark
${phoenix.version}
下面老规矩,直接上代码。
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{SaveMode, SparkSession}
/**
* Created by blockchain on 18-9-9 下午8:33 in Beijing.
*/
object SparkHBaseDataFrame {
def main(args: Array[String]) {
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
val spark = SparkSession.builder().appName("SparkHBaseDataFrame").getOrCreate()
val url = s"jdbc:phoenix:localhost:2181"
val dbtable = "PHOENIXTEST"
//spark 读取 phoenix 返回 DataFrame 的 第一种方式
val rdf = spark.read
.format("jdbc")
.option("driver", "org.apache.phoenix.jdbc.PhoenixDriver")
.option("url", url)
.option("dbtable", dbtable)
.load()
rdf.printSchema()
//spark 读取 phoenix 返回 DataFrame 的 第二种方式
val df = spark.read
.format("org.apache.phoenix.spark")
.options(Map("table" -> dbtable, "zkUrl" -> url))
.load()
df.printSchema()
//spark DataFrame 写入 phoenix,需要先建好表
df.write
.format("org.apache.phoenix.spark")
.mode(SaveMode.Overwrite)
.options(Map("table" -> "PHOENIXTESTCOPY", "zkUrl" -> url))
.save()
spark.stop()
}
}
在 Phoenix 中查看写入的数据
0: jdbc:phoenix:localhost:2181> SELECT * FROM PHOENIXTEST ;
+-----+----------+
| PK | COL1 |
+-----+----------+
| 1 | Hello |
| 2 | World |
| 3 | HBase |
| 4 | Phoenix |
+-----+----------+
4 rows selected (0.049 seconds)
0: jdbc:phoenix:localhost:2181>
0: jdbc:phoenix:localhost:2181> SELECT * FROM PHOENIXTESTCOPY ;
+-----+----------+
| PK | COL1 |
+-----+----------+
| 1 | Hello |
| 2 | World |
| 3 | HBase |
| 4 | Phoenix |
+-----+----------+
4 rows selected (0.03 seconds)
0: jdbc:phoenix:localhost:2181>
如上所示,写入成功。
原文链接:转载请注明出处,谢谢!
本文参考链接:
Spark与HBase的整合
Spark DataFrame写入HBase的常用方式
spark将数据写入hbase以及从hbase读取数据
Use Spark to read and write HBase data
Apache Spark - Apache HBase Connector
Apache Spark Comes to Apache HBase with HBase-Spark Module
Spark-on-HBase: DataFrame based HBase connector
Spark 下操作 HBase(1.0.0 新 API)
Spark整合HBase(自定义HBase DataSource)
spark通过Phoenix读取hbase数据