linux IO多路复用有epoll, poll, select,epoll性能比其他几者要好。
名词比较绕口,理解涵义就好。一个epoll场景:一个酒吧服务员(一个线程),前面趴了一群醉汉,突然一个吼一声“倒酒”(事件),你小跑过去给他倒一杯,然后随他去吧,突然又一个要倒酒,你又过去倒上,就这样一个服务员服务好多人,有时没人喝酒,服务员处于空闲状态,可以干点别的玩玩手机。至于epoll与select,poll的区别在于后两者的场景中醉汉不说话,你要挨个问要不要酒,没时间玩手机了。io多路复用大概就是指这几个醉汉共用一个服务员。
其实“I/O多路复用”这个坑爹翻译可能是这个概念在中文里面如此难理解的原因。所谓的I/O多路复用在英文中其实叫 I/O multiplexing. 如果你搜索multiplexing啥意思,基本上都会出这个图:
于是大部分人都直接联想到"一根网线,多个sock复用" 这个概念,包括上面的几个回答, 其实不管你用多进程还是I/O多路复用, 网线都只有一根好伐。多个Sock复用一根网线这个功能是在内核+驱动层实现的。
重要的事情再说一遍: I/O multiplexing 这里面的 multiplexing 指的其实是在单个线程通过记录跟踪每一个Sock(I/O流)的状态(对应空管塔里面的Fight progress strip槽)来同时管理多个I/O流. 发明它的原因,是尽量多的提高服务器的吞吐能力。
是不是听起来好拗口,看个图就懂了.
在同一个线程里面, 通过拨开关的方式,来同时传输多个I/O流, (学过EE的人现在可以站出来义正严辞说这个叫“时分复用”了)。
什么,你还没有搞懂“一个请求到来了,nginx使用epoll接收请求的过程是怎样的”, 多看看这个图就了解了。提醒下,ngnix会有很多链接进来, epoll会把他们都监视起来,然后像拨开关一样,谁有数据就拨向谁,然后调用相应的代码处理。
-------------------------------------------------------------------------------------------------------------------------
了解这个基本的概念以后,其他的就很好解释了。
select, poll, epoll 都是I/O多路复用的具体的实现,之所以有这三个鬼存在,其实是他们出现是有先后顺序的。
I/O多路复用这个概念被提出来以后, select是第一个实现 (1983 左右在BSD里面实现的)。
一、select 被实现以后,很快就暴露出了很多问题。
“If a file descriptor being monitored by select() is closed in another thread, the result is unspecified”
霸不霸气
二、于是14年以后(1997年)一帮人又实现了poll, poll 修复了select的很多问题,比如
其实拖14年那么久也不是效率问题, 而是那个时代的硬件实在太弱,一台服务器处理1千多个链接简直就是神一样的存在了,select很长段时间已经满足需求。
但是poll仍然不是线程安全的, 这就意味着,不管服务器有多强悍,你也只能在一个线程里面处理一组I/O流。你当然可以那多进程来配合了,不过然后你就有了多进程的各种问题。
于是5年以后, 在2002, 大神 Davide Libenzi 实现了epoll.
三、epoll 可以说是I/O 多路复用最新的一个实现,epoll 修复了poll 和select绝大部分问题, 比如:
可是epoll 有个致命的缺点,只有linux支持。比如BSD上面对应的实现是kqueue。
其实有些国内知名厂商把epoll从安卓里面裁掉这种脑残的事情我会主动告诉你嘛。什么,你说没人用安卓做服务器,尼玛你是看不起p2p软件了啦。
而ngnix 的设计原则里面, 它会使用目标平台上面最高效的I/O多路复用模型咯,所以才会有这个设置。一般情况下,如果可能的话,尽量都用epoll/kqueue吧。
详细的在这里:
Connection processing methods
PS: 上面所有这些比较分析,都建立在大并发下面,如果你的并发数太少,用哪个,其实都没有区别。 如果像是在欧朋数据中心里面的转码服务器那种动不动就是几万几十万的并发,不用epoll我可以直接去撞墙了。
==============================IO多路复用的实现=============================
三、IO多路复用(Reactor)
IO多路复用模型是建立在内核提供的多路分离函数select基础之上的,使用select函数可以避免同步非阻塞IO模型中轮询等待的问题。
图3 多路分离函数select
如图3所示,用户首先将需要进行IO操作的socket添加到select中,然后阻塞等待select系统调用返回。当数据到达时,socket被激活,select函数返回。用户线程正式发起read请求,读取数据并继续执行。
从流程上来看,使用select函数进行IO请求和同步阻塞模型没有太大的区别,甚至还多了添加监视socket,以及调用select函数的额外操作,效率更差。但是,使用select以后最大的优势是用户可以在一个线程内同时处理多个socket的IO请求。用户可以注册多个socket,然后不断地调用select读取被激活的socket,即可达到在同一个线程内同时处理多个IO请求的目的。而在同步阻塞模型中,必须通过多线程的方式才能达到这个目的。
用户线程使用select函数的伪代码描述为:
{
select(socket);
while(1) {
sockets = select();
for(socket in sockets) {
if(can_read(socket)) {
read(socket, buffer);
process(buffer);
}
}
}
}
其中while循环前将socket添加到select监视中,然后在while内一直调用select获取被激活的socket,一旦socket可读,便调用read函数将socket中的数据读取出来。
然而,使用select函数的优点并不仅限于此。虽然上述方式允许单线程内处理多个IO请求,但是每个IO请求的过程还是阻塞的(在select函数上阻塞),平均时间甚至比同步阻塞IO模型还要长。如果用户线程只注册自己感兴趣的socket或者IO请求,然后去做自己的事情,等到数据到来时再进行处理,则可以提高CPU的利用率。
IO多路复用模型使用了Reactor设计模式实现了这一机制。
图4 Reactor设计模式
如图4所示,EventHandler抽象类表示IO事件处理器,它拥有IO文件句柄Handle(通过get_handle获取),以及对Handle的操作handle_event(读/写等)。继承于EventHandler的子类可以对事件处理器的行为进行定制。Reactor类用于管理EventHandler(注册、删除等),并使用handle_events实现事件循环,不断调用同步事件多路分离器(一般是内核)的多路分离函数select,只要某个文件句柄被激活(可读/写等),select就返回(阻塞),handle_events就会调用与文件句柄关联的事件处理器的handle_event进行相关操作。
图5 IO多路复用
如图5所示,通过Reactor的方式,可以将用户线程轮询IO操作状态的工作统一交给handle_events事件循环进行处理。用户线程注册事件处理器之后可以继续执行做其他的工作(异步),而Reactor线程负责调用内核的select函数检查socket状态。当有socket被激活时,则通知相应的用户线程(或执行用户线程的回调函数),执行handle_event进行数据读取、处理的工作。由于select函数是阻塞的,因此多路IO复用模型也被称为异步阻塞IO模型。注意,这里的所说的阻塞是指select函数执行时线程被阻塞,而不是指socket。一般在使用IO多路复用模型时,socket都是设置为NONBLOCK的,不过这并不会产生影响,因为用户发起IO请求时,数据已经到达了,用户线程一定不会被阻塞。
用户线程使用IO多路复用模型的伪代码描述为:
void UserEventHandler::handle_event() {
if(can_read(socket)) {
read(socket, buffer);
process(buffer);
}
}
{
Reactor.register(new UserEventHandler(socket));
}
用户需要重写EventHandler的handle_event函数进行读取数据、处理数据的工作,用户线程只需要将自己的EventHandler注册到Reactor即可。Reactor中handle_events事件循环的伪代码大致如下。
Reactor::handle_events() {
while(1) {
sockets = select();
for(socket in sockets) {
get_event_handler(socket).handle_event();
}
}
}
事件循环不断地调用select获取被激活的socket,然后根据获取socket对应的EventHandler,执行器handle_event函数即可。
IO多路复用是最常使用的IO模型,但是其异步程度还不够“彻底”,因为它使用了会阻塞线程的select系统调用。因此IO多路复用只能称为异步阻塞IO,而非真正的异步IO。
四、异步IO(Proactor)
“真正”的异步IO需要操作系统更强的支持。在IO多路复用模型中,事件循环将文件句柄的状态事件通知给用户线程,由用户线程自行读取数据、处理数据。而在异步IO模型中,当用户线程收到通知时,数据已经被内核读取完毕,并放在了用户线程指定的缓冲区内,内核在IO完成后通知用户线程直接使用即可。
异步IO模型使用了Proactor设计模式实现了这一机制。
图6 Proactor设计模式
如图6,Proactor模式和Reactor模式在结构上比较相似,不过在用户(Client)使用方式上差别较大。Reactor模式中,用户线程通过向Reactor对象注册感兴趣的事件监听,然后事件触发时调用事件处理函数。而Proactor模式中,用户线程将AsynchronousOperation(读/写等)、Proactor以及操作完成时的CompletionHandler注册到AsynchronousOperationProcessor。AsynchronousOperationProcessor使用Facade模式提供了一组异步操作API(读/写等)供用户使用,当用户线程调用异步API后,便继续执行自己的任务。AsynchronousOperationProcessor 会开启独立的内核线程执行异步操作,实现真正的异步。当异步IO操作完成时,AsynchronousOperationProcessor将用户线程与AsynchronousOperation一起注册的Proactor和CompletionHandler取出,然后将CompletionHandler与IO操作的结果数据一起转发给Proactor,Proactor负责回调每一个异步操作的事件完成处理函数handle_event。虽然Proactor模式中每个异步操作都可以绑定一个Proactor对象,但是一般在操作系统中,Proactor被实现为Singleton模式,以便于集中化分发操作完成事件。
图7 异步IO
如图7所示,异步IO模型中,用户线程直接使用内核提供的异步IO API发起read请求,且发起后立即返回,继续执行用户线程代码。不过此时用户线程已经将调用的AsynchronousOperation和CompletionHandler注册到内核,然后操作系统开启独立的内核线程去处理IO操作。当read请求的数据到达时,由内核负责读取socket中的数据,并写入用户指定的缓冲区中。最后内核将read的数据和用户线程注册的CompletionHandler分发给内部Proactor,Proactor将IO完成的信息通知给用户线程(一般通过调用用户线程注册的完成事件处理函数),完成异步IO。
用户线程使用异步IO模型的伪代码描述为:
void UserCompletionHandler::handle_event(buffer) {
process(buffer);
}
{
aio_read(socket, new UserCompletionHandler);
}
用户需要重写CompletionHandler的handle_event函数进行处理数据的工作,参数buffer表示Proactor已经准备好的数据,用户线程直接调用内核提供的异步IO API,并将重写的CompletionHandler注册即可。
相比于IO多路复用模型,异步IO并不十分常用,不少高性能并发服务程序使用IO多路复用模型+多线程任务处理的架构基本可以满足需求。况且目前操作系统对异步IO的支持并非特别完善,更多的是采用IO多路复用模型模拟异步IO的方式(IO事件触发时不直接通知用户线程,而是将数据读写完毕后放到用户指定的缓冲区中)。Java7之后已经支持了异步IO,感兴趣的读者可以尝试使用。