给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以空格分隔。
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
4
0.1 0.2 0.3 0.4
5.00
看我代码这么短就知道没啥难的了吧hhh
找到这样计算的规律就行啦!
#include
#include
int main(){
using namespace std;
int n;
cin >> n;
double temp, sum = 0;
for (int i = 0; i < n; i++){
cin >> temp;
sum += temp * (n - i) * (i + 1);
}
cout.setf(ios::fixed);
cout << setprecision(2) << sum << endl;
return 0;
}