2018-german-collegiate-programming-contest-gcpc-18-en-Problem M: Mountaineers

  The Chilean Andes have become increasingly popular as a destination for backpacking and hiking. Many parts of the Andes are quite remote and thus dangerous. Because of this, the Ministry of Tourism wants to help travelers plan their trips. In particular, the travelers need to know how high they will have to climb during their journey, as this information will help them decide which equipment they need to bring. The Ministry has tasked you to provide the aspiring mountaineers with this data.
 You are given a topographic map of a part of the Andes, represented as a two-dimensional grid of height values, as well as the list of origins and destinations. Mountaineers can move from each grid cell to any of the four adjacent cells. For each mountaineer find the minimal height that they must be able to reach in order to complete their journey.
Input
The input consists of:

  • one line with three integers m, n and q (1 ≤ m, n ≤ 500, 1 ≤ q ≤ 1 0 5 10^{5} 105), where m is thenumber of rows, n is the number of columns, and q is the number of mountaineers;
  • one line with three integers m, n and q (1 ≤ m, n ≤ 500, 1 ≤ q ≤ 1 0 5 10^{5} 105), where m is the number of rows, n is the number of columns, and q is the number of mountaineers;
  • m lines, each with n integers h1, . . . , hn (1 ≤ hi ≤ 106), the height values in the map;
  • q lines, each with four integers x1, y1, x2, y2 (1 ≤ x1, x2 ≤ m, 1 ≤ y1, y2 ≤ n), describing a mountaineer who wants to trek from (x1, y1) to (x2, y2).

The top left cell of the grid has coordinates (1, 1) and the bottom right cell has coordinates(m, n).

Output
Output q integers, the minimal height for each mountaineer, in the same order as in the input.

Sample Input 1           Sample Output 1

3 5 3                 2
1 3 2 1 3                4
2 4 5 4 4                2
2 1 3 2 2
1 1 3 2
2 4 2 2
1 4 3 4

题意:
给你一个邻接矩阵,每个数值代表的是这个位置的高度,然后问你两个位置之间的路径的最大值的最小化是多少
题解
先把高度按从小到大排,然后依次遍历,遍历的过程判断该位置的四周有没有已经被遍历的,如果有就需要连一条本身到该位置的边(因为之后遍历的肯定是高度更高的,所以连边,代表高度高的是父亲),然后要做个并查集,把已经连过的都并在一起,所以连的其实是目前遍历的点和之前遍历的点的并查集,因为之前的所有点都是小于目前点的高度,所以之前的所有点要到当前点最大高度最小化就是目前遍历点的高度。看代码就知道了,很容易理解的

#include <bits/stdc++.h>

using namespace std;
typedef pair<int,int>P;

int a[509][509];

P h[250009];
bool vis[250009];
int nx[]={0,1,0,-1};
int ny[]={1,0,-1,0};
int bin[250009],head[250009],dep[250009];
int f[250009][21];
int val[250009];

int find(int x){
    return bin[x]=bin[x]==x?x:find(bin[x]);
}
int cnt=0;
struct rt{
    int v,next;
}edge[250009];
void add(int u,int v){
    edge[cnt].v=v;
    edge[cnt].next=head[u];
    head[u]=cnt++;
}

void bfs(int s)
{
    queue<int>Q;
    Q.push(s);
//    f[s][0]=s;
    dep[s] = 1;
    while(!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        for(int i=head[u];i!=-1;i=edge[i].next){
            int v=edge[i].v;
            dep[v]=dep[u]+1;
            f[v][0] = u;
            for(int j = 1; j <= 20; j++) f[v][j] = f[f[v][j-1]][j-1];
            Q.push(v);
        }
    }
}

int lca(int x, int y)
{
    if(dep[x] > dep[y]) swap(x, y);
    for(int i = 20; i >= 0; i--)
        if(dep[f[y][i]] >= dep[x]) y = f[y][i];
    if(x == y) return x;

    for(int i = 20; i >= 0; i--)
        if(f[x][i] != f[y][i]) x = f[x][i], y = f[y][i];
    return f[x][0];
}

int main(){
    int n,m,q;
    while(~scanf("%d%d%d",&n,&m,&q)){
        memset(vis,0,sizeof(vis));
        memset(head,-1,sizeof(head));
        for(int i=1;i<=n*m;i++)bin[i]=i;
        int tot=0;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                scanf("%d",&a[i][j]);
                h[tot].first = a[i][j];
                h[tot].second = (i-1)*m+j;
                val[(i-1)*m+j]=a[i][j];
                tot++;
            }
        }
        sort(h,h+tot);
        for(int i=0;i<tot;i++){
            int u=h[i].second;
            int x=(u-1)/m+1,y=u-(x-1)*m;
            vis[u]=1;
            for(int j=0;j<4;j++){
                int sx=x+nx[j],sy=y+ny[j];
                int v = (sx-1)*m+sy;
                if(sx>=1&&sx<=n&&sy>=1&&sy<=m&&vis[v]){
                    int fx=find(v);
                    if(fx==u)continue;
                    bin[fx]=u;
                    add(u,fx);
                }
            }
        }
        bfs(h[tot-1].second);
        int x1,y1,x2,y2;
        for(int i=1;i<=q;i++){
            scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
            int p=lca((x1-1)*m+y1,(x2-1)*m+y2);
            printf("%d\n",val[p]);
        }
    }
    return 0;
}

你可能感兴趣的:(并查集,lca)