dp函数dp[i][j]表示有i个0和j个1时能组成的最多字符串的个数,每个字符串顺序遍历,大于等于zeros或者ones才可以执行
In the computer world, use restricted resource you have to generate maximum benefit is what we always want to pursue.
For now, suppose you are a dominator of m 0s
and n 1s
respectively. On the other hand, there is an array with strings consisting of only 0s
and 1s
.
Now your task is to find the maximum number of strings that you can form with given m 0s
and n 1s
. Each 0
and 1
can be used at most once.
Note:
0s
and 1s
will both not exceed 100
600
.
Example 1:
Input: Array = {"10", "0001", "111001", "1", "0"}, m = 5, n = 3
Output: 4
Explanation: This are totally 4 strings can be formed by the using of 5 0s and 3 1s, which are “10,”0001”,”1”,”0”
Example 2:
Input: Array = {"10", "0", "1"}, m = 1, n = 1
Output: 2
Explanation: You could form "10", but then you'd have nothing left. Better form "0" and "1".
这道题是一道典型的应用DP来解的题,如果我们看到这种求总数,而不是列出所有情况的题,十有八九都是用DP来解,重中之重就是在于找出递推式。如果你第一反应没有想到用DP来做,想得是用贪心算法来做,比如先给字符串数组排个序,让长度小的字符串在前面,然后遍历每个字符串,遇到0或者1就将对应的m和n的值减小,这种方法在有的时候是不对的,比如对于{"11", "01", "10"},m=2,n=2这个例子,我们将遍历完“11”的时候,把1用完了,那么对于后面两个字符串就没法处理了,而其实正确的答案是应该组成后面两个字符串才对。所以我们需要建立一个二维的DP数组,其中dp[i][j]表示有i个0和j个1时能组成的最多字符串的个数,而对于当前遍历到的字符串,我们统计出其中0和1的个数为zeros和ones,然后dp[i - zeros][j - ones]表示当前的i和j减去zeros和ones之前能拼成字符串的个数,那么加上当前的zeros和ones就是当前dp[i][j]可以达到的个数,我们跟其原有数值对比取较大值即可,所以递推式如下:
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1);
有了递推式,我们就可以很容易的写出代码如下:
dp[i][j] = Math.max(dp[i - zeros][j - ones] + 1, dp[i][j])
其实归根到底都是爬楼梯的问题 :只不过步长只有1
当我要凑 i个0 和 j个 1 的时候 我对于每个字符串 第一个字符串假设我有 2个0 1个 1
那我找到 i-2 个0 j-1个1 出有几个字串的个数再加1不就是 i个0 和j 个1 要找的个数 再和原本我的i 个0 j 个1 比较即可
这里没想到可以用一个字符串一个字符串的顺序比较
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
int[][] dp = new int[m+1][n+1];
for(String str : strs){
int zeros = 0, ones = 0;
for(char c : str.toCharArray()){
if(c == '0')
zeros++;
else
ones++;
}
for(int i = m; i>= zeros; i--){
for(int j = n; j>= ones; j--){
dp[i][j] = Math.max(dp[i][j], dp[i - zeros][j - ones] + 1);
}
}
}
return dp[m][n];
}
}