使用Spark Streaming从kafka中读取数据把数据写入到mysql 实例

文章目录

      • 一、 题目
          • 题目和数据
      • 二、 pom依赖
      • 三、建表语句
      • 四、 连接kafka配置类
      • 五、 自定义分区类
      • 六、 读取数据并发送数据
      • 七、 消费数据,把数据存储到mysql

一、 题目

题目和数据
链接: https://pan.baidu.com/s/1YVvhqy1u9rILqQWzJnNoVA 
提取码: twt3
1、以下是RNG S8 8强赛失败后,官微发表道歉微博下一级评论
1.1、在kafak中创建rng_comment主题,设置2个分区2个副本
1.2、数据预处理,把空行过滤掉
1.3、请把给出的文件写入到kafka中,根据数据id进行分区,id为奇数的发送到一个分区中,偶数的发送到另一个分区
1.4、使用Spark Streaming对接kafka
1.5、使用Spark Streaming对接kafka之后进行计算
在mysql中创建一个数据库rng_comment
在数据库rng_comment创建vip_rank表,字段为数据的所有字段
在数据库rng_comment创建like_status表,字段为数据的所有字段
在数据库rng_comment创建count_conmment表,字段为 时间,条数 
	1.5.1、查询出微博会员等级为5的用户,并把这些数据写入到mysql数据库中的vip_rank表中
	1.5.2、查询出评论赞的个数在10个以上的数据,并写入到mysql数据库中的like_status表中
	1.5.3、分别计算出2018/10/20 ,2018/10/21,2018/10/22,2018/10/23这四天每一天的评论数是多少,并写入到mysql数据库中的count_conmment表中

数据说明:
rng_comment.txt文件中的数据

字段 字段含义
index 数据id
child_comment 回复数量
comment_time 评论时间
content 评论内容
da_v 微博个人认证
like_status
pic 图片评论url
user_id 微博用户id
user_name 微博用户名
vip_rank 微博会员等级
stamp 时间戳

二、 pom依赖


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0modelVersion>

    <groupId>org.examplegroupId>
    <artifactId>spark01artifactId>
    <version>1.0-SNAPSHOTversion>


    
    <repositories>
        <repository>
            <id>aliyunid>
            <url>http://maven.aliyun.com/nexus/content/groups/public/url>
        repository>
        <repository>
            <id>clouderaid>
            <url>https://repository.cloudera.com/artifactory/cloudera-repos/url>
        repository>
        <repository>
            <id>jbossid>
            <url>http://repository.jboss.com/nexus/content/groups/publicurl>
        repository>

        <repository>
            <id>scala-tools.orgid>
            <name>Scala-tools Maven2 Repositoryname>
            <url>http://scala-tools.org/repo-releasesurl>
        repository>
    repositories>

    <pluginRepositories>
        <pluginRepository>
            <id>scala-tools.orgid>
            <name>Scala-tools Maven2 Repositoryname>
            <url>http://scala-tools.org/repo-releasesurl>
        pluginRepository>
    pluginRepositories>


    <properties>
        <maven.compiler.source>1.8maven.compiler.source>
        <maven.compiler.target>1.8maven.compiler.target>
        <encoding>UTF-8encoding>
        <scala.version>2.11.8scala.version>
        <scala.compat.version>2.11scala.compat.version>
        <hadoop.version>2.7.4hadoop.version>
        <spark.version>2.2.0spark.version>
    properties>
    <dependencies>
        <dependency>
            <groupId>org.scala-langgroupId>
            <artifactId>scala-libraryartifactId>
            <version>${scala.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-core_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-sql_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-hive_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-hive-thriftserver_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-streaming-kafka-0-10_2.11artifactId>
            <version>${spark.version}version>
        dependency>
        <dependency>
            <groupId>org.apache.sparkgroupId>
            <artifactId>spark-sql-kafka-0-10_2.11artifactId>
            <version>${spark.version}version>
        dependency>

        

        <dependency>
            <groupId>org.apache.hadoopgroupId>
            <artifactId>hadoop-clientartifactId>
            <version>2.7.4version>
        dependency>
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-clientartifactId>
            <version>1.3.1version>
        dependency>
        <dependency>
            <groupId>org.apache.hbasegroupId>
            <artifactId>hbase-serverartifactId>
            <version>1.3.1version>
        dependency>
        <dependency>
            <groupId>com.typesafegroupId>
            <artifactId>configartifactId>
            <version>1.3.3version>
        dependency>
        <dependency>
            <groupId>mysqlgroupId>
            <artifactId>mysql-connector-javaartifactId>
            <version>5.1.38version>
        dependency>
    dependencies>

    <build>
        <sourceDirectory>src/main/scalasourceDirectory>
        <testSourceDirectory>src/test/scalatestSourceDirectory>
        <plugins>
            
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-compiler-pluginartifactId>
                <version>3.5.1version>
            plugin>
            
            <plugin>
                <groupId>net.alchim31.mavengroupId>
                <artifactId>scala-maven-pluginartifactId>
                <version>3.2.2version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compilegoal>
                            <goal>testCompilegoal>
                        goals>
                        <configuration>
                            <args>
                                <arg>-dependencyfilearg>
                                <arg>${project.build.directory}/.scala_dependenciesarg>
                            args>
                        configuration>
                    execution>
                executions>
            plugin>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-surefire-pluginartifactId>
                <version>2.18.1version>
                <configuration>
                    <useFile>falseuseFile>
                    <disableXmlReport>truedisableXmlReport>
                    <includes>
                        <include>**/*Test.*include>
                        <include>**/*Suite.*include>
                    includes>
                configuration>
            plugin>
            <plugin>
                <groupId>org.apache.maven.pluginsgroupId>
                <artifactId>maven-shade-pluginartifactId>
                <version>2.3version>
                <executions>
                    <execution>
                        <phase>packagephase>
                        <goals>
                            <goal>shadegoal>
                        goals>
                        <configuration>
                            <filters>
                                <filter>
                                    <artifact>*:*artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SFexclude>
                                        <exclude>META-INF/*.DSAexclude>
                                        <exclude>META-INF/*.RSAexclude>
                                    excludes>
                                filter>
                            filters>
                            <transformers>
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>mainClass>
                                transformer>
                            transformers>
                        configuration>
                    execution>
                executions>
            plugin>
        plugins>
    build>
project>

三、建表语句

-- 创建数据库
create database rng_comment character set utf8;
-- 使用数据库
use rng_comment;
-- 创建 vip_rank 表
create table vip_rank
(
    `index`       varchar(32) comment '数据id',
    child_comment varchar(32) comment '回复数量 ',
    comment_time  varchar(255) comment '评论时间',
    content       varchar(255) comment '评论内容',
    da_v          varchar(32) comment '微博个人认证',
    like_status   varchar(32) comment '赞',
    pic           varchar(255) comment '图片评论url',
    user_id       varchar(255) comment '微博用户id',
    user_name     varchar(32) comment '微博用户名',
    vip_rank      varchar(32) comment '微博会员等级',
    stamp         varchar(32) comment '时间戳'
);
-- 创建 like_status 表
create table like_status
(
    `index`       varchar(32) comment '数据id',
    child_comment varchar(32) comment '回复数量 ',
    comment_time  varchar(255) comment '评论时间',
    content       varchar(255) comment '评论内容',
    da_v          varchar(32) comment '微博个人认证',
    like_status   varchar(32) comment '赞',
    pic           varchar(255) comment '图片评论url',
    user_id       varchar(255) comment '微博用户id',
    user_name     varchar(32) comment '微博用户名',
    vip_rank      varchar(32) comment '微博会员等级',
    stamp         varchar(32) comment '时间戳'
);
-- 创建 count_comment 表
create table count_comment
(
    time  varchar(32) primary key comment '时间',
    count int comment '条数'
);
-- 查询表结构
describe vip_rank;
describe like_status;
describe count_comment;

-- 查询表字段信息
select column_name,
       column_comment
from information_schema.columns
where table_schema = 'rng_comment'
  and table_name = 'vip_rank';

select column_name,
       column_comment
from information_schema.columns
where table_schema = 'rng_comment'
  and table_name = 'like_status';

select column_name,
       column_comment
from information_schema.columns
where table_schema = 'rng_comment'
  and table_name = 'count_comment';

-- 存在则修改不存在则创建,要有唯一id
INSERT INTO count_comment (time,count) VALUES (?,?) ON DUPLICATE KEY UPDATE count = ?;
-- 清空表
-- truncate table vip_rank;
-- truncate table like_status;
-- truncate table count_comment;

四、 连接kafka配置类

import java.util.Properties

import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer
import org.apache.spark.rdd.RDD

/**
 * @author 红尘丶世界
 * @version v 1.0
 */
class KafkaProducerConf(topic: String, severs: String) extends Serializable {
  //kafka 配置
  def createKafkaConnection(): KafkaProducer[String, String] = {
    val props = new Properties()
    props.put("bootstrap.servers", severs)
    //todo: 一定别忘了 .getName
    props.put("key.serializer", classOf[StringSerializer].getName)
    props.put("value.serializer", classOf[StringSerializer].getName)
    props.put("retries", "1") //设置重试次数
    props.put("batch.size", "71680") //设置批量发送数据的大小
    props.put("buffer.memory", "33554432")//设置缓冲区大小
    props.put("linger.ms", "1000") //最多延迟1000毫秒
    props.put("partitioner.class", (new MyPartitioner).getClass)
    new KafkaProducer[String, String](props)
  }

  //创建生产者
  lazy val kafkaProducer: KafkaProducer[String, String] = createKafkaConnection()
  Runtime.getRuntime.addShutdownHook(new Thread() {
    override def run(): Unit = {
      kafkaProducer.close()
    }
  })

  //把数据保存到kafka
  def save(vs: RDD[String]): Unit = {
    try {
      vs.foreach(x => {
        val record = new ProducerRecord[String, String](topic, x.split("\t")(0), x.toString)
        kafkaProducer.send(record)
      })
    } catch {
      case e: Exception => println("发送数据出错:" + e)
    }
  }
}

五、 自定义分区类

(注意这是java类,不是scala类,同样可以创建在scala包下)

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;

import java.util.Map;

/**
 * @author 红尘丶世界
 * @version v 1.0
 */
public class MyPartitioner implements Partitioner {

    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        String s = key.toString();
        int i = Integer.parseInt(s);
        if (i % 2 == 0) {
            return 0;
        } else {
            return 1;
        }
    }

    @Override
    public void close() {

    }

    @Override
    public void configure(Map<String, ?> configs) {

    }
}

六、 读取数据并发送数据

import org.apache.spark.{SparkConf, SparkContext}

/**
 * @author 红尘丶世界
 * @version v 1.0
 */
object Producer {
  def main(args: Array[String]): Unit = {
    //创建 sparkContext
    val conf: SparkConf = new SparkConf().setAppName("sparkStream").setMaster("local[*]")
    val sc = new SparkContext(conf)
    //读取文件并过滤空行
    val lines = sc.textFile("D:\\dev\\大数据\\大数据资料\\spark\\4.14号练习题\\rng_comment.txt").filter(_.trim != "")
    //指定连接的节点
    val sink: KafkaProducerConf = new KafkaProducerConf("rng_comment", "hadoop01:9092,hadoop02:9092,hadoop03:9092")
    //发送数据到kafka
    sink.save(lines)
    //关闭连接
    sink.createKafkaConnection().close()
  }
}

七、 消费数据,把数据存储到mysql

package com.czxy.exercise.exercise01

import java.sql.{Connection, DriverManager, PreparedStatement}

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * @author 红尘丶世界
 * @version v 1.0
 */
object SparkStreamingKafka {

  def main(args: Array[String]): Unit = {
    //1 创建sparkConf
    var conf = new SparkConf().setMaster("local[*]").setAppName("SparkStremingDemo1")
    //2 创建一个sparkContext
    var sc = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //3 创建streamingContext
    var ssc = new StreamingContext(sc, Seconds(5))
    //设置缓存数据的位置
    ssc.checkpoint("./TmpCount")

    var kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "hadoop01:9092,hadoop01:9092,hadoop01:9092",
      "key.deserializer" -> classOf[StringDeserializer],
      "value.deserializer" -> classOf[StringDeserializer],
      "group.id" -> "SparkKafkaDemo",
      //earliest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,从头开始消费
      //latest:当各分区下有已提交的offset时,从提交的offset开始消费;无提交的offset时,消费新产生的该分区下的数据
      //none:topic各分区都存在已提交的offset时,从offset后开始消费;只要有一个分区不存在已提交的offset,则抛出异常
      //这里配置latest自动重置偏移量为最新的偏移量,即如果有偏移量从偏移量位置开始消费,没有偏移量从新来的数据开始消费
      "auto.offset.reset" -> "earliest",
      //false表示关闭自动提交.由spark帮你提交到Checkpoint或程序员手动维护
      "enable.auto.commit" -> (false: java.lang.Boolean)

    )

    //4 接收kafka数据并根据业务逻辑进行计算
    //设置位置策略   均衡,
    //kafkaDatas  含有key和value
    //key是kafka成产数据时指定的key(可能为空)
    //value是真实的数据(100%有数据)
    val data: InputDStream[ConsumerRecord[String, String]] =
    KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent,
      ConsumerStrategies.Subscribe[String, String](Array("rng_comment"), kafkaParams))

    data.foreachRDD(_.foreach(row => {
        //获取一行转化成list
        val list: List[String] = row.value().split("\t").toList
        //判断如果 微博会员等级为5 就写入到 vip_rank表
        if (list(9) == "5") {
          //掉用方法把数据写入mysql
          saveDataToMysqlVipRankAndLikeStatus(list, "vip_rank")
        }
        if (list(5).toInt >= 10) {
          //掉用方法把数据写入mysql
          saveDataToMysqlVipRankAndLikeStatus(list, "like_status")
        }
      })
    )

    //按天进行计算
    val count: DStream[(String, Int)] = data
      .map(_.value().split("\t")(2).split(" ")(0)) //截取日期中的天
      .map((_, 1)).updateStateByKey(updateFunc) //实时统计总数(历史累加)

    //遍历统计结果
    count.foreachRDD(_.foreach(row => {
        //调用方法把数据存储到mysql
        saveDataToMysqlCountComment(row._1, row._2)
      }
      ))

    //5 开启计算任务
    ssc.start()
    //6 等待关闭
    ssc.awaitTermination()
  }


  //创建连接,使用jdbc连接mysql
  def mysqlConnection(): Connection = {
    DriverManager.getConnection("jdbc:mysql://hadoop01:3306/rng_comment?characterEncoding=UTF-8", "root", "123456")
  }

  /**
   * 将数据存入到mysql中
   *
   * @param data 数据
   */
  def saveDataToMysqlVipRankAndLikeStatus(data: List[String], tableName: String): Unit = {
    //获取连接
    val connection: Connection = mysqlConnection()
    //创建一个变量用来保存sql语句
    val sql = s"insert into ${tableName} (`index`, child_comment, comment_time, content, da_v, like_status, pic, user_id, user_name,vip_rank, stamp) values (?,?,?,?,?,?,?,?,?,?,?)"
    //将一条数据存入到mysql
    val ps: PreparedStatement = connection.prepareStatement(sql)
    ps.setString(1, data.head)
    ps.setString(2, data(1))
    ps.setString(3, data(2))
    ps.setString(4, data(3))
    ps.setString(5, data(4))
    ps.setString(6, data(5))
    ps.setString(7, data(6))
    ps.setString(8, data(7))
    ps.setString(9, data(8))
    ps.setString(10, data(9))
    ps.setString(11, data(10))
    //提交
    ps.execute()
    connection.close()
  }


  /**
   * 将数据存入到mysql中
   *
   * @param time  时间
   * @param count 数量
   */
  def saveDataToMysqlCountComment(time: String, count: Int): Unit = {
    println(s"${time}\t ${count}")
    if (time.contains("2018/10/20") || time.contains("2018/10/21") || time.contains("2018/10/22") || time.contains("2018/10/23")) {
      //获取连接
      val connection: Connection = mysqlConnection()
      //创建一个变量用来保存sql语句
      val sql = "INSERT INTO count_comment (time,count) VALUES (?,?) ON DUPLICATE KEY UPDATE count = ?"
      //将一条数据存入到mysql
      val ps: PreparedStatement = connection.prepareStatement(sql)
      ps.setString(1, time)
      ps.setInt(2, count)
      ps.setInt(3, count)
      //提交
      ps.execute()
      connection.close()
    }
  }

  /**
   * 历史累加
   *
   * @param currentValues 当前值
   * @param historyValue  历史值
   * @return
   */
  def updateFunc(currentValues: Seq[Int], historyValue: Option[Int]): Option[Int] = {
  	//历史累加
    val result: Int = currentValues.sum + historyValue.getOrElse(0)
    //返回结果
    Some(result)
  }
}

你可能感兴趣的:(spark)