主文章:JDK源码分析:ConcurrentHashMap(JDK1.7和JDK1.8),HashTable与Collections.synchronizedMap
哈希表table数组,如下与HashMap一样也是使用一个Node类型的数组table来定义的,不同之处是使用volatile修饰该数组。
baseCount和counterCells:用来记录当前ConcurrentHashMap存在多少个元素使用的,在进行增删链表节点时,默认是更新baseCount的值即可,如果同时存在多个线程并发进行对链表节点的增删操作,则放弃更新baseCount,而是counterCells数组中添加一个CounterCell,之后在计算size的时候,累加baseCount和遍历并累加counterCells。
/* ---------------- Fields -------------- */
/**
* The array of bins. Lazily initialized upon first insertion.
* Size is always a power of two. Accessed directly by iterators.
*/
transient volatile Node<K,V>[] table;
/**
* Base counter value, used mainly when there is no contention,
* but also as a fallback during table initialization
* races. Updated via CAS.
*/
private transient volatile long baseCount;
/**
* Table of counter cells. When non-null, size is a power of 2.
*/
private transient volatile CounterCell[] counterCells;
链表节点Node的定义:value,next使用volatile修饰保证线程可见性。
/**
* Key-value entry. This class is never exported out as a
* user-mutable Map.Entry (i.e., one supporting setValue; see
* MapEntry below), but can be used for read-only traversals used
* in bulk tasks. Subclasses of Node with a negative hash field
* are special, and contain null keys and values (but are never
* exported). Otherwise, keys and vals are never null.
*/
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
volatile V val;
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return val; }
...
/**
* Virtualized support for map.get(); overridden in subclasses.
*/
Node<K,V> find(int h, Object k) {
Node<K,V> e = this;
if (k != null) {
do {
K ek;
if (e.hash == h &&
((ek = e.key) == k || (ek != null && k.equals(ek))))
return e;
} while ((e = e.next) != null);
}
return null;
}
}
主要定义了获取,更新,添加链表节点Node的方法,具体为基于UNSAFE类提供的硬件级别的原子操作来保证线程安全,而不是通过加锁机制,如synchronized关键字,ReentrantLock重入锁来实现,即无锁化。
/* ---------------- Table element access -------------- */
/*
* Volatile access methods are used for table elements as well as
* elements of in-progress next table while resizing. All uses of
* the tab arguments must be null checked by callers. All callers
* also paranoically precheck that tab's length is not zero (or an
* equivalent check), thus ensuring that any index argument taking
* the form of a hash value anded with (length - 1) is a valid
* index. Note that, to be correct wrt arbitrary concurrency
* errors by users, these checks must operate on local variables,
* which accounts for some odd-looking inline assignments below.
* Note that calls to setTabAt always occur within locked regions,
* and so in principle require only release ordering, not
* full volatile semantics, but are currently coded as volatile
* writes to be conservative.
*/
@SuppressWarnings("unchecked")
// 原子获取链表节点
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
// CAS更新或新增链表节点
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
// 原子新增链表节点
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
写操作主要在putVal方法定义,实现逻辑与HashMap的putVal基本一致,只是相关操作,如获取链表节点,更新链表节点的值value和新增链表节点,都会使用到UNSAFE提供的硬件级别的原子操作,而如果是更新链表节点的值或者在一个已经存在的链表中新增节点,则是通过synchronized同步锁来实现线程安全性。
/**
* Maps the specified key to the specified value in this table.
* Neither the key nor the value can be null.
*
* The value can be retrieved by calling the {@code get} method
* with a key that is equal to the original key.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with {@code key}, or
* {@code null} if there was no mapping for {@code key}
* @throws NullPointerException if the specified key or value is null
*/
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode());
int binCount = 0;
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
if (tab == null || (n = tab.length) == 0)
tab = initTable();
// i为该key在table数组的下标
// null表示该key对应的链表(具体为链表头结点)
// 在哈希表table中还不存在
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
// 新增链表头结点,cas方式添加到哈希表table
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
// f为链表头结点,使用synchronized加锁
// 则整条链表则被加锁了
synchronized (f) {
// 再次检查,即double check
// 即避免进入同步块之前,链表被修改了
if (tabAt(tab, i) == f) {
// hash值大于0
if (fh >= 0) {
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
// 节点已经存在,更新value即可
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
// 该key对应的节点不存在,
// 则新增节点并添加到该链表的末尾
Node<K,V> pred = e;
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
// 红黑树节点,
// 则往该红黑树更新或添加该节点即可
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
// 判断是否需要将链表转为红黑树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
// 递增ConcurrentHashMap的节点总个数
addCount(1L, binCount);
return null;
}
使用synchronized同步锁的原因:因为如果该key对应的节点所在的链表已经存在的情况下,可以通过UNSAFE的tabAt方法基于volatile获取到该链表最新的头节点,但是需要通过遍历该链表来判断该节点是否存在,如果不使用synchronized对链表头结点进行加锁,则在遍历过程中,其他线程可能会添加这个节点,导致重复添加的并发问题。故通过synchronized锁住链表头结点的方式,保证任何时候只存在一个线程对该链表进行更新操作。
锁的范围缩小:相对于JDK1.7的Segment分段锁,即分段锁的写操作,在操作之前需要先获取lock锁,即不管是(1)链表不存在,添加链表头结点,(2)还是更新链表节点,(3)还是在已经存在的链表中添加节点,都需要先获取lock锁,而在JDK1.8的写操作中,(1)如果该链表不存在,添加链表头的时候是不需要加锁的,因为是往哈希表table数组的某个位置填充值,不需要遍历链表之类的,所以可以基于UNSAFE的casTabAt方法,即CAS机制检查table数组的该位置是否存在元素(链表头结点)来实现线程安全,这是写操作最先检查的;如果该链表已经存在,即(2)(3)则需要通过synchronized来锁住该链表头结点,而在JDK1.7的实现中是锁住该Segment内部的整个哈希表table数组,所以这里也是一个性能提升的地方,缩小了锁的范围。
get读操作由于是从哈希表中查找并读取链表节点数据,不会对链表进行写更新操作,故基于volatile的happend-before原则保证的线程可见性(即一个线程的操作对其他线程可见),即可保证get读取到该key对应的最新链表节点,整个过程不需要进行加锁。
具体为table和Node的value和next均是volatile修饰。
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code key.equals(k)},
* then this method returns {@code v}; otherwise it returns
* {@code null}. (There can be at most one such mapping.)
*
* @throws NullPointerException if the specified key is null
*/
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
int h = spread(key.hashCode());
// 获取链表头结点
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
// 头结点的key相等说明找到了,直接返回
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
// 遍历该链表,查找对应的节点
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
size方法为计算当前ConcurrentHashMap一共存在多少链表节点,与JDK1.7中每次需要遍历segments数组来计算不同的是,在JDK1.8中,使用baseCount和counterCells数组,在增删链表节点时,实时更新来统计,在size方法中直接返回即可。整个过程不需要加锁。
并发修改异常处理:CounterCell的value值为1,作用是某个线程在更新baseCount时,如果存在其他线程同时在更新,则放弃更新baseCount的值,即保持baseCount不变,而是各自往counterCells数组添加一个counterCell元素,在size方法中,累加counterCells数组的value,然后与baseCount相加,从而获取准确的大小。
/**
* {@inheritDoc}
*/
public int size() {
long n = sumCount();
return ((n < 0L) ? 0 :
(n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
(int)n);
}
/* ---------------- Counter support -------------- */
/**
* A padded cell for distributing counts. Adapted from LongAdder
* and Striped64. See their internal docs for explanation.
*/
@sun.misc.Contended static final class CounterCell {
volatile long value;
CounterCell(long x) { value = x; }
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a;
// sum初始化为baseCount
long sum = baseCount;
if (as != null) {
// 遍历counterCells并累加其value到sum
for (int i = 0; i < as.length; ++i) {
if ((a = as[i]) != null)
sum += a.value;
}
}
return sum;
}
addCount:在put写操作之后,递增baseCount值。在putVal中调用addCount(1L, binCount);,即递增1,在其批量操作中,则可以是批量的数量作为参数,如addCount(100L, binCount)
/**
* Adds to count, and if table is too small and not already
* resizing, initiates transfer. If already resizing, helps
* perform transfer if work is available. Rechecks occupancy
* after a transfer to see if another resize is already needed
* because resizings are lagging additions.
*
* @param x the count to add
* @param check if <0, don't check resize, if <= 1 only check if uncontended
*/
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
// CAS更新baseCount失败,表示存在并发异常
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
// CAS更新失败时,在counterCells数组添加一个counterCell对象
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
// 往counterCells数组添加counterCell对象
// See LongAdder version for explanation
private final void fullAddCount(long x, boolean wasUncontended) {
int h;
if ((h = ThreadLocalRandom.getProbe()) == 0) {
ThreadLocalRandom.localInit(); // force initialization
h = ThreadLocalRandom.getProbe();
wasUncontended = true;
}
boolean collide = false; // True if last slot nonempty
for (;;) {
CounterCell[] as; CounterCell a; int n; long v;
if ((as = counterCells) != null && (n = as.length) > 0) {
if ((a = as[(n - 1) & h]) == null) {
if (cellsBusy == 0) { // Try to attach new Cell
CounterCell r = new CounterCell(x); // Optimistic create
if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean created = false;
try { // Recheck under lock
CounterCell[] rs; int m, j;
if ((rs = counterCells) != null &&
(m = rs.length) > 0 &&
rs[j = (m - 1) & h] == null) {
rs[j] = r;
created = true;
}
} finally {
cellsBusy = 0;
}
if (created)
break;
continue; // Slot is now non-empty
}
}
collide = false;
}
else if (!wasUncontended) // CAS already known to fail
wasUncontended = true; // Continue after rehash
else if (U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))
break;
else if (counterCells != as || n >= NCPU)
collide = false; // At max size or stale
else if (!collide)
collide = true;
else if (cellsBusy == 0 &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
try {
if (counterCells == as) {// Expand table unless stale
CounterCell[] rs = new CounterCell[n << 1];
for (int i = 0; i < n; ++i)
rs[i] = as[i];
counterCells = rs;
}
} finally {
cellsBusy = 0;
}
collide = false;
continue; // Retry with expanded table
}
h = ThreadLocalRandom.advanceProbe(h);
}
else if (cellsBusy == 0 && counterCells == as &&
U.compareAndSwapInt(this, CELLSBUSY, 0, 1)) {
boolean init = false;
try { // Initialize table
if (counterCells == as) {
CounterCell[] rs = new CounterCell[2];
rs[h & 1] = new CounterCell(x);
counterCells = rs;
init = true;
}
} finally {
cellsBusy = 0;
}
if (init)
break;
}
else if (U.compareAndSwapLong(this, BASECOUNT, v = baseCount, v + x))
break; // Fall back on using base
}
}