Java1.8ConcurrnentHashMap源码分析

参考文献:http://cmsblogs.com/?p=2283

                  https://www.jianshu.com/p/e694f1e868ec

                  https://blog.csdn.net/panweiwei1994/article/details/78897275

JDK1.7

jdk1.7中采用Segment + HashEntry的方式进行实现,结构如下:

Java1.8ConcurrnentHashMap源码分析_第1张图片

ConcurrentHashMap初始化时,计算出Segment数组的大小ssize和每个SegmentHashEntry数组的大小cap,并初始化Segment数组的第一个元素;其中ssize大小为2的幂次方,默认为16,cap大小也是2的幂次方,最小值为2,ConcurrentHashMap在Java1.7中通过“锁分段”来实现线程安全。ConcurrentHashMap将哈希表分成许多片段(segments),每一个片段(table)都类似于HashMap,它有一个HashEntry数组,数组的每项又是HashEntry组成的链表。每个片段都是Segment类型的,Segment继承了ReentrantLock,所以Segment本质上是一个可重入的互斥锁。这样每个片段都有了一个锁,这就是“锁分段”。线程如想访问某一key-value键值对,需要先获取键值对所在的segment的锁,获取锁后,其他线程就不能访问此segment了,但可以访问其他的segment。

put实现

当执行put方法插入数据时,根据key的hash值,在Segment数组中找到相应的位置,如果相应位置的Segment还未初始化,则通过CAS进行赋值,接着执行Segment对象的put方法通过加锁机制插入数据,实现如下:

场景:线程A和线程B同时执行相同Segment对象的put方法

1、线程A执行tryLock()方法成功获取锁,则把HashEntry对象插入到相应的位置;
2、线程B获取锁失败,则执行scanAndLockForPut()方法,在scanAndLockForPut方法中,会通过重复执行tryLock()方法尝试获取锁,在多处理器环境下,重复次数为64,单处理器重复次数为1,当执行tryLock()方法的次数超过上限时,则执行lock()方法挂起线程B;
3、当线程A执行完插入操作时,会通过unlock()方法释放锁,接着唤醒线程B继续执行;

put操作的具体流程

1、将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。

2、遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的 value。

3、不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。

4、最后会解除在 1 中所获取当前 Segment 的锁。

get操作的具体流程

只需要将 Key 通过 Hash 之后定位到具体的 Segment ,再通过一次 Hash 定位到具体的元素上。

由于 HashEntry 中的 value 属性是用 volatile 关键词修饰的,保证了内存可见性,所以每次获取时都是最新值。

ConcurrentHashMap 的 get 方法是非常高效的,因为整个过程都不需要加锁

因为concurrnenthashmap可以多线程来操作,所以他的size大小时实时变化的,一般的思路是统计每个Segment对象中的元素个数,然后进行累加,但是这种方式计算出来的结果并不一样的准确的,因为在计算后面几个Segment的元素个数时,已经计算过的Segment同时可能有数据的插入或则删除,在1.7的实现中,采用了如下方式:

try {
    for (;;) {
        if (retries++ == RETRIES_BEFORE_LOCK) {
            for (int j = 0; j < segments.length; ++j)
                ensureSegment(j).lock(); // force creation
        }
        sum = 0L;
        size = 0;
        overflow = false;
        for (int j = 0; j < segments.length; ++j) {
            Segment seg = segmentAt(segments, j);
            if (seg != null) {
                sum += seg.modCount;
                int c = seg.count;
                if (c < 0 || (size += c) < 0)
                    overflow = true;
            }
        }
        if (sum == last)
            break;
        last = sum;
    }
} finally {
    if (retries > RETRIES_BEFORE_LOCK) {
        for (int j = 0; j < segments.length; ++j)
            segmentAt(segments, j).unlock();
    }
}

先采用不加锁的方式,连续计算元素的个数,最多计算3次:
1、如果前后两次计算结果相同,则说明计算出来的元素个数是准确的;
2、如果前后两次计算结果都不同,则给每个Segment进行加锁,再计算一次元素的个数;

JDK1.8

1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现,结构如下:

Java1.8ConcurrnentHashMap源码分析_第2张图片

ConcurrentHashMap定义了如下几个常量:

// 最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16;

//
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;

//
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;

// 
private static final float LOAD_FACTOR = 0.75f;

// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;

//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;

//
static final int MIN_TREEIFY_CAPACITY = 64;

//
private static final int MIN_TRANSFER_STRIDE = 16;

//
private static int RESIZE_STAMP_BITS = 16;

// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;

// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;

// forwarding nodes的hash值
static final int MOVED     = -1; 

// 树根节点的hash值
static final int TREEBIN   = -2; 

// ReservationNode的hash值
static final int RESERVED  = -3; 

// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
  1. table:用来存放Node节点数据的,默认为null,默认大小为16的数组,每次扩容时大小总是2的幂次方;
  2. nextTable:扩容时新生成的数据,数组为table的两倍;
  3. Node:节点,保存key-value的数据结构;
  4. ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动
  5. sizeCtl:控制标识符,用来控制table初始化和扩容操作的,在不同地方有不同的用途,其值也不同,所代表的含义也不同
    • 负数代表正在进行初始化或扩容操作
    • -1代表正在初始化
    • -N 表示有N-1个线程正在进行扩容操作
    • 正数或0代表hash表还没有被初始化,这个数值表示初始化或下一次进行扩容的大小   

下面看一下concurrnenthashmap的get()方法

public V get(Object key) {
    Node[] tab; Node e, p; int n, eh; K ek;
    //计算key的哈希值
    int h = spread(key.hashCode());
    //如果表不为空,表长度大于0,key所在的桶的头结点不为null
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {//如果查到的桶的头结点的key哈希值与参数key的哈希值相同
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))//如果查到的桶的头结点的key参数key相等,返回桶的头结点的value
                return e.val;
        }
        else if (eh < 0)//如果查到的桶的头结点的key哈希值小于0,即要找的在树上
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {//如果要找的节点既不是桶的头结点也不是在树上,那就说明在链表上
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))//遍历链表,找到节点,返回值
                return e.val;
        }
    }
    //如果都没找到,返回null
    return null;
}

可以将步骤总结如下:

  1. 通过key计算哈希值
  2. 通过哈希值找到桶
  3. 通过哈希值和桶来查找节点
    3.1. 以此判断桶的头结点是不是要找的节点
    3.2. 如果不是,判断桶的头节点的哈希值是否小于0,如果是则说明要找的节点在树上
    3.3. 如果以上两个条件都不满足,则说明要找的节点在链表上,遍历链表,查找节点
  4. 如果通过以上步骤找到了节点,返回节点的value。没找到,就返回null。

从源码中可以看出,上面的步骤并没有加锁。

concurrnenthashmap的put()方法

public V put(K key, V value) {
    return putVal(key, value, false);
}

/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    //计算哈希值
    int hash = spread(key.hashCode());
    int binCount = 0;
    //死循环,只有插入成功才能跳出循环
    for (Node[] tab = table;;) {
        Node f; int n, i, fh;
        //如果table没有初始化,初始化table
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        //根据哈希值计算在table中的位置
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            //如果这个位置没有值,直接将键值对放进去,不需要加锁
            if (casTabAt(tab, i, null,
                         new Node(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        //如果要插入的位置是一个forwordingNode节点,表示正在扩容,那么当前线程帮助扩容
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        else {
            V oldVal = null;
            //进行到这一步,说明要插入的位置有值,需要加锁
            synchronized (f) {
                //确定f是tab中的头节点
                if (tabAt(tab, i) == f) {
                    //如果头结点的哈希值大于等于0,说明要插入的节点在链表中
                    if (fh >= 0) {
                        binCount = 1;
                        //遍历链表中的所有节点
                        for (Node e = f;; ++binCount) {
                            K ek;
                            //如果某一节点的key哈希值和key与参数相等,替换节点的value
                            if (e.hash == hash &&
                                ((ek = e.key) == key ||
                                 (ek != null && key.equals(ek)))) {
                                oldVal = e.val;
                                if (!onlyIfAbsent)
                                    e.val = value;
                                break;
                            }
                            Node pred = e;
                            //遍历到了最后一个节点,还没找到key对应的节点,根据参数新建节点,插入链表尾部
                            if ((e = e.next) == null) {
                                pred.next = new Node(hash, key,
                                                          value, null);
                                break;
                            }
                        }
                    }
                    //如果要插入的节点在树中,则按照树的方式插入或替换节点
                    else if (f instanceof TreeBin) {
                        Node p;
                        binCount = 2;
                        if ((p = ((TreeBin)f).putTreeVal(hash, key,
                                                       value)) != null) {
                            oldVal = p.val;
                            if (!onlyIfAbsent)
                                p.val = value;
                        }
                    }
                }
            }
            //如果binCount不为0,说明插入或者替换操作完成了
            if (binCount != 0) {
                //判断节点数量是否大于8,如果大于就需要把链表转化成红黑树
                if (binCount >= TREEIFY_THRESHOLD)
                    treeifyBin(tab, i);
                if (oldVal != null)
                    return oldVal;//如果在链表中找到了指定key的节点,返回被替换的value
                break;
            }
        }
    }
    //能执行到这一步,说明节点不是被替换的,是被插入的,所以要将map的元素数量加1
    addCount(1L, binCount);
    return null;
}

可以将步骤总结如下:

  1. 计算key哈希值
  2. 根据哈希值计算在table中的位置
  3. 根据哈希值执行插入或替换操作
    3.1 如果这个位置没有值,直接将键值对放进去,不需要加锁。
    3.2 如果要插入的位置是一个forwordingNode节点,表示正在扩容,那么当前线程帮助扩容
    3.3 加锁。以下操作都需要加锁。
    3.4 如果要插入的节点在链表中,遍历链表中的所有节点,如果某一节点的key哈希值和key与参数相等,替换节点的value,记录被替换的值;如果遍历到了最后一个节点,还没找到key对应的节点,根据参数新建节点,插入链表尾部。
    3.5 如果要插入的节点在树中,则按照树的方式插入或替换节点。如果是替换操作,记录被替换的值
  4. 判断节点数量是否大于8,如果大于就需要把链表转化成红黑树
  5. 如果操作3中执行的是替换操作,返回被替换的value。程序结束。
  6. 能执行到这一步,说明节点不是被替换的,是被插入的,所以要调用addCount方法,该方法主要做两件事,一件更新baseCount的值,第二件检测是否进行扩容

当ConcurrentHashMap中table元素个数达到了容量阈值(sizeCtl)时,则需要进行扩容操作。

transfer()方法为ConcurrentHashMap扩容操作的核心方法。由于ConcurrentHashMap支持多线程扩容,而且也没有进行加锁,所以实现会变得有点儿复杂。整个扩容操作分为两步:

  1. 构建一个nextTable,其大小为原来大小的两倍,这个步骤是在单线程环境下完成的
  2. 将原来table里面的内容复制到nextTable中,这个步骤是允许多线程操作的,所以性能得到提升,减少了扩容的时间消耗
  private final void transfer(Node[] tab, Node[] nextTab) {
        int n = tab.length, stride;
        // 每核处理的量小于16,则强制赋值16
        if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
            stride = MIN_TRANSFER_STRIDE; // subdivide range
        if (nextTab == null) {            // initiating
            try {
                @SuppressWarnings("unchecked")
                Node[] nt = (Node[])new Node[n << 1];        //构建一个nextTable对象,其容量为原来容量的两倍
                nextTab = nt;
            } catch (Throwable ex) {      // try to cope with OOME
                sizeCtl = Integer.MAX_VALUE;
                return;
            }
            nextTable = nextTab;
            transferIndex = n;
        }
        int nextn = nextTab.length;
        // 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab)
        ForwardingNode fwd = new ForwardingNode(nextTab);
        // 当advance == true时,表明该节点已经处理过了
        boolean advance = true;
        boolean finishing = false; // to ensure sweep before committing nextTab
        for (int i = 0, bound = 0;;) {
            Node f; int fh;
            // 控制 --i ,遍历原hash表中的节点
            while (advance) {
                int nextIndex, nextBound;
                if (--i >= bound || finishing)
                    advance = false;
                else if ((nextIndex = transferIndex) <= 0) {
                    i = -1;
                    advance = false;
                }
                // 用CAS计算得到的transferIndex
                else if (U.compareAndSwapInt
                        (this, TRANSFERINDEX, nextIndex,
                                nextBound = (nextIndex > stride ?
                                        nextIndex - stride : 0))) {
                    bound = nextBound;
                    i = nextIndex - 1;
                    advance = false;
                }
            }
            if (i < 0 || i >= n || i + n >= nextn) {
                int sc;
                // 已经完成所有节点复制了
                if (finishing) {
                    nextTable = null;
                    table = nextTab;        // table 指向nextTable
                    sizeCtl = (n << 1) - (n >>> 1);     // sizeCtl阈值为原来的1.5倍
                    return;     // 跳出死循环,
                }
                // CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作
                if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
                    if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
                        return;
                    finishing = advance = true;
                    i = n; // recheck before commit
                }
            }
            // 遍历的节点为null,则放入到ForwardingNode 指针节点
            else if ((f = tabAt(tab, i)) == null)
                advance = casTabAt(tab, i, null, fwd);
            // f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了
            // 这里是控制并发扩容的核心
            else if ((fh = f.hash) == MOVED)
                advance = true; // already processed
            else {
                // 节点加锁
                synchronized (f) {
                    // 节点复制工作
                    if (tabAt(tab, i) == f) {
                        Node ln, hn;
                        // fh >= 0 ,表示为链表节点
                        if (fh >= 0) {
                            // 构造两个链表  一个是原链表  另一个是原链表的反序排列
                            int runBit = fh & n;
                            Node lastRun = f;
                            for (Node p = f.next; p != null; p = p.next) {
                                int b = p.hash & n;
                                if (b != runBit) {
                                    runBit = b;
                                    lastRun = p;
                                }
                            }
                            if (runBit == 0) {
                                ln = lastRun;
                                hn = null;
                            }
                            else {
                                hn = lastRun;
                                ln = null;
                            }
                            for (Node p = f; p != lastRun; p = p.next) {
                                int ph = p.hash; K pk = p.key; V pv = p.val;
                                if ((ph & n) == 0)
                                    ln = new Node(ph, pk, pv, ln);
                                else
                                    hn = new Node(ph, pk, pv, hn);
                            }
                            // 在nextTable i 位置处插上链表
                            setTabAt(nextTab, i, ln);
                            // 在nextTable i + n 位置处插上链表
                            setTabAt(nextTab, i + n, hn);
                            // 在table i 位置处插上ForwardingNode 表示该节点已经处理过了
                            setTabAt(tab, i, fwd);
                            // advance = true 可以执行--i动作,遍历节点
                            advance = true;
                        }
                        // 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致
                        else if (f instanceof TreeBin) {
                            TreeBin t = (TreeBin)f;
                            TreeNode lo = null, loTail = null;
                            TreeNode hi = null, hiTail = null;
                            int lc = 0, hc = 0;
                            for (Node e = t.first; e != null; e = e.next) {
                                int h = e.hash;
                                TreeNode p = new TreeNode
                                        (h, e.key, e.val, null, null);
                                if ((h & n) == 0) {
                                    if ((p.prev = loTail) == null)
                                        lo = p;
                                    else
                                        loTail.next = p;
                                    loTail = p;
                                    ++lc;
                                }
                                else {
                                    if ((p.prev = hiTail) == null)
                                        hi = p;
                                    else
                                        hiTail.next = p;
                                    hiTail = p;
                                    ++hc;
                                }
                            }

                            // 扩容后树节点个数若<=6,将树转链表
                            ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
                                    (hc != 0) ? new TreeBin(lo) : t;
                            hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
                                    (lc != 0) ? new TreeBin(hi) : t;
                            setTabAt(nextTab, i, ln);
                            setTabAt(nextTab, i + n, hn);
                            setTabAt(tab, i, fwd);
                            advance = true;
                        }
                    }
                }
            }
        }
    }

上面的源码有点儿长,稍微复杂了一些,在这里我们抛弃它多线程环境,我们从单线程角度来看:

  1. 为每个内核分任务,并保证其不小于16
  2. 检查nextTable是否为null,如果是,则初始化nextTable,使其容量为table的两倍
  3. 死循环遍历节点,知道finished:节点从table复制到nextTable中,支持并发,请思路如下:
    • 如果节点 f 为null,则插入ForwardingNode(采用Unsafe.compareAndSwapObjectf方法实现),这个是触发并发扩容的关键
    • 如果f为链表的头节点(fh >= 0),则先构造一个反序链表,然后把他们分别放在nextTable的i和i + n位置,并将ForwardingNode 插入原节点位置,代表已经处理过了
    • 如果f为TreeBin节点,同样也是构造一个反序 ,同时需要判断是否需要进行unTreeify()操作,并把处理的结果分别插入到nextTable的i 和i+nw位置,并插入ForwardingNode 节点
  4. 所有节点复制完成后,则将table指向nextTable,同时更新sizeCtl = nextTable的0.75倍,完成扩容过程

在多线程环境下,ConcurrentHashMap用两点来保证正确性:ForwardingNode和synchronized。当一个线程遍历到的节点如果是ForwardingNode,则继续往后遍历,如果不是,则将该节点加锁,防止其他线程进入,完成后设置ForwardingNode节点,以便要其他线程可以看到该节点已经处理过了,如此交叉进行,高效而又安全。

你可能感兴趣的:(Java1.8ConcurrnentHashMap源码分析)