人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv

简介:

虹软中国提供了免费的SDK供用户使用或进行二次开发,可在其官网http://www.arcsoft.com.cn/ai/arcface.html注册下载。支持C++和Opencv

下面我将一些使用方法和测试效果与大家分享,亲测有效。

首先在其官网注册后,会发给你邮箱使用的APPID和各使用场景的Key当做验证ID,下载需要的SDK

          人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第1张图片                      人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第2张图片 

 

解压后,在vs中新建工程,把inc和lib里面的文件复制到你的工程下即可。把samplecode里面的cpp添加进你的工程。doc文件夹提供了PDF 用于技术文档的说明,主要是各函数的接口。

人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第3张图片

在示例工程中,把注册邮箱发你的APPID和SDKKey粘贴在图示位置,并把sample.bmp换成你自己的人脸图片局可以了,这样整个工程就可以用了。

人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第4张图片

1、人脸检测

如果遇到这个错误请参照https://blog.csdn.net/lxy201700/article/details/16921629

人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第5张图片

 

演示效果:

人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第6张图片

会给你提供人脸的矩形坐标。通过rectangle()函数把该长方形区域画出来并显示的效果如下:

2、人脸识别

效果:

人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv_第7张图片

代码:

#include 
#include 
#include 
#include 
#include "arcsoft_fsdk_face_recognition.h"
#include "merror.h"
#include 
using namespace std;
using namespace cv;

#include "merror.h"
#pragma comment(lib,"libarcsoft_fsdk_face_recognition.lib")
#define WORKBUF_SIZE        (40*1024*1024)
#define INPUT_IMAGE1_PATH "Image1.bmp"
#define INPUT_IMAGE2_PATH "Image2.bmp"
#define APPID		"你的APPID"			//APPID
#define SDKKey		"你的SDKKey"			//SDKKey


bool readBmp24(const char* path, uint8_t **imageData, int *pWidth, int *pHeight)
{
	if (path == NULL || imageData == NULL || pWidth == NULL || pHeight == NULL)
	{
		return false;
	}
	FILE *fp = fopen(path, "rb");
	if (fp == NULL)
	{
		return false;
	}
	fseek(fp, sizeof(BITMAPFILEHEADER), 0);
	BITMAPINFOHEADER head;
	fread(&head, sizeof(BITMAPINFOHEADER), 1, fp);
	*pWidth = head.biWidth;
	*pHeight = head.biHeight;
	int biBitCount = head.biBitCount;
	if (24 == biBitCount)
	{
		int lineByte = ((*pWidth) * biBitCount / 8 + 3) / 4 * 4;
		*imageData = (uint8_t *)malloc(lineByte * (*pHeight));
		uint8_t * data = (uint8_t *)malloc(lineByte * (*pHeight));
		fseek(fp, 54, SEEK_SET);
		fread(data, 1, lineByte * (*pHeight), fp);
		for (int i = 0; i < *pHeight; i++)
		{
			for (int j = 0; j < *pWidth; j++)
			{
				memcpy((*imageData) + i * (*pWidth) * 3 + j * 3, data + (((*pHeight) - 1) - i) * lineByte + j * 3, 3);
			}
		}
		free(data);
	}
	else
	{
		fclose(fp);
		return false;
	}
	fclose(fp);
	return true;
}
int main()
{
	/* 初始化引擎和变量 */
	MRESULT nRet = MERR_UNKNOWN;
	MHandle hEngine = nullptr;
	MInt32 nScale = 16;
	MInt32 nMaxFace = 10;
	MByte *pWorkMem = (MByte *)malloc(WORKBUF_SIZE);
	if (pWorkMem == nullptr)
	{
		return -1;
	}
	nRet = AFR_FSDK_InitialEngine(APPID, SDKKey, pWorkMem, WORKBUF_SIZE, &hEngine);
	if (nRet != MOK)
	{
		return -1;
	}
	/* 打印版本信息 */
	const AFR_FSDK_Version * pVersionInfo = nullptr;
	pVersionInfo = AFR_FSDK_GetVersion(hEngine);
	fprintf(stdout, "%d %d %d %d %d\n", pVersionInfo->lCodebase, pVersionInfo->lMajor, pVersionInfo->lMinor, pVersionInfo->lBuild, pVersionInfo->lFeatureLevel);
	fprintf(stdout, "%s\n", pVersionInfo->Version);
	fprintf(stdout, "%s\n", pVersionInfo->BuildDate);
	fprintf(stdout, "%s\n", pVersionInfo->CopyRight);

	/* 读取第一张静态图片信息,并保存到ASVLOFFSCREEN结构体 (以ASVL_PAF_RGB24_B8G8R8格式为例) */
	ASVLOFFSCREEN offInput1 = { 0 };
	offInput1.u32PixelArrayFormat = ASVL_PAF_RGB24_B8G8R8;
	offInput1.ppu8Plane[0] = nullptr;
	readBmp24(INPUT_IMAGE1_PATH, (uint8_t**)&offInput1.ppu8Plane[0], &offInput1.i32Width, &offInput1.i32Height);
	if (!offInput1.ppu8Plane[0])
	{
		fprintf(stderr, "fail to ReadBmp(%s)\n", INPUT_IMAGE1_PATH);
		AFR_FSDK_UninitialEngine(hEngine);
		free(pWorkMem);
		return -1;
	}
	offInput1.pi32Pitch[0] = offInput1.i32Width * 3;
	AFR_FSDK_FACEMODEL faceModels1 = { 0 };
	{
		AFR_FSDK_FACEINPUT faceInput;
		//第一张人脸信息通过face detection\face tracking获得
		faceInput.lOrient = AFR_FSDK_FOC_0;//人脸方向
		//人脸框位置
		faceInput.rcFace.left = 300;
		faceInput.rcFace.top = 100;
		faceInput.rcFace.right = 402;
		faceInput.rcFace.bottom = 219;
		//提取第一张人脸特征
		AFR_FSDK_FACEMODEL LocalFaceModels = { 0 };
		nRet = AFR_FSDK_ExtractFRFeature(hEngine, &offInput1, &faceInput, &LocalFaceModels);
		if (nRet != MOK)
		{
			fprintf(stderr, "fail to Extract 1st FR Feature, error code: %d\n", nRet);
		}
		/* 拷贝人脸特征结果 */
		faceModels1.lFeatureSize = LocalFaceModels.lFeatureSize;
		faceModels1.pbFeature = (MByte*)malloc(faceModels1.lFeatureSize);
		memcpy(faceModels1.pbFeature, LocalFaceModels.pbFeature, faceModels1.lFeatureSize);
	}
	/* 读取第二张静态图片信息,并保存到ASVLOFFSCREEN结构体 (以ASVL_PAF_RGB24_B8G8R8格式为例) */
	ASVLOFFSCREEN offInput2 = { 0 };
	offInput2.u32PixelArrayFormat = ASVL_PAF_RGB24_B8G8R8;
	offInput2.ppu8Plane[0] = nullptr;
	readBmp24(INPUT_IMAGE2_PATH, (uint8_t**)&offInput2.ppu8Plane[0], &offInput2.i32Width, &offInput2.i32Height);
	if (!offInput2.ppu8Plane[0])
	{
		fprintf(stderr, "fail to ReadBmp(%s)\n", INPUT_IMAGE2_PATH);
		free(offInput1.ppu8Plane[0]);
		AFR_FSDK_UninitialEngine(hEngine);
		free(pWorkMem);
		return -1;
	}
	offInput2.pi32Pitch[0] = offInput2.i32Width * 3;
	AFR_FSDK_FACEMODEL faceModels2 = { 0 };
	{
		AFR_FSDK_FACEINPUT faceInput;
		//第二张人脸信息通过face detection\face tracking获得
		faceInput.lOrient = AFR_FSDK_FOC_0;//人脸方向
		//人脸框位置
		faceInput.rcFace.left = 300;
		faceInput.rcFace.top = 100;
		faceInput.rcFace.right = 402;
		faceInput.rcFace.bottom = 219;
		//提取第二张人脸特征
		AFR_FSDK_FACEMODEL LocalFaceModels = { 0 };
		nRet = AFR_FSDK_ExtractFRFeature(hEngine, &offInput2, &faceInput, &LocalFaceModels);
		if (nRet != MOK)
		{
			fprintf(stderr, "fail to Extract 2nd FR Feature, error code: %d\n", nRet);
		}
		/* 拷贝人脸特征结果 */
		faceModels2.lFeatureSize = LocalFaceModels.lFeatureSize;
		faceModels2.pbFeature = (MByte*)malloc(faceModels2.lFeatureSize);
		memcpy(faceModels2.pbFeature, LocalFaceModels.pbFeature, faceModels2.lFeatureSize);
	}
	/* 对比两张人脸特征,获得比对结果 */
	MFloat  fSimilScore = 0.0f;
	nRet = AFR_FSDK_FacePairMatching(hEngine, &faceModels1, &faceModels2, &fSimilScore);
	if (nRet == MOK)
	{
		fprintf(stdout, "fSimilScore =  %f\n", fSimilScore);
	}
	else
	{
		fprintf(stderr, "FacePairMatching failed , errorcode is %d \n", nRet);
	}
	/* 释放引擎和内存 */
	nRet = AFR_FSDK_UninitialEngine(hEngine);
	if (nRet != MOK)
	{
		fprintf(stderr, "UninitialFaceEngine failed , errorcode is %d \n", nRet);
	}
	free(offInput1.ppu8Plane[0]);
	free(offInput2.ppu8Plane[0]);
	free(faceModels1.pbFeature);
	free(faceModels2.pbFeature);
	free(pWorkMem);
	return 0;
}

 

3、人脸追踪,性别和年龄识别等可以自行测试使用。

你可能感兴趣的:(人脸检测,人脸识别,人脸追踪,人脸关键点检测,年龄和性别识别(基于虹软中国人脸技术SDK)C++,Opencv)