Java开源推荐引擎

收集摘抄网上java相关开源推荐系统,希望正在查找相关资源的朋友有些帮助。

1、EasyRec 

Java开发的推荐系统,感觉更像一个完整的推荐产品,包括了数据录入模块、管理模块、推荐挖掘、离线分析等,整个系统比较完备。
项目地址:
http://easyrec.org/

2、Lenskit

http://lenskit.grouplens.org/
这个Java开发的开源推荐系统,来自美国的明尼苏达大学,也是推荐领域知名的测试数据集Movielens的作者,
他们的推荐系统团队,在学术圈内的影响力很大,很多新的学术思想会放到这里

3、Mahout

网址
http://mahout.apache.org/
Mahout知名度很高,它是Apache基金资助的重要项目,在国内流传很广,并已经有一些中文相关书籍了。注意Mahout是一个分布式机器学习算法的集合,协同过滤只是其中的一部分。除了被称为Taste的分布式协同过滤的实现(Hadoop-based,另有pure Java版本),Mahout里还有其他常见的机器学习算法的分布式实现方案。
另外Mahout的作者之一Sean Owen基于Mahout开发了一个试验性质的推荐系统,称为Myrrix, 可以看这里:

http://myrrix.com/quick-start/

Myrrix是一个完整的、实时的、可扩展的集群和推荐系统,基于Mahout实现。

主要架构分为两部分:服务层:在线服务,响应请求、数据读入、提供实时推荐;计算层:用于分布式离线计算,在后台使用分布式机器学习算法为服务层 更新机器学习模型。Myrrix使用这两个层构建了一个完整的推荐系统,服务层是一个HTTP服务器,能够接收更新,并在毫秒级别内计算出更新结果。

服务层可以单独使用,无需计算层,它会在本地运行机器学习算法。

计算层也可以单独使用,其本质是一系列的Hadoop jobs。


4、PREA

全名是 Personalized Recommendation Algorithms Toolkit, 开发语言为Java。也是一个轻量级的开源项目
项目网址:
http://mloss.org/software/view/420/
放在Mloss这个大project下。我个人感觉PREA还是比较简陋的,参加开发的三位工程师Joonseok Lee, Mingxuan Sun, Guy Lebanon更新频率很低,提供的资料也少。
不过Mloss下倒是能找到其他一些推荐开源项目
http://mloss.org/software/tags/collaborative-filtering/

5、RapidMiner

项目网址为:
http://rapidminer.com/
Java语言开发,RapidMiner(前身是Yale)已经是一个比较成熟的数据挖掘解决方案了,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。
另外RapidMiner提供commercial license,提供R语言接口,感觉在向着一个商用的数据挖掘公司的方向在前进。



1.推荐系统那个开源软件列表汇总和点评

2. 推荐系统开源项目列表


你可能感兴趣的:(推荐系统)