几种Kriging插值方法的比较

2015年12月08日星期二

T.s.road总结笔记:KrigingLab2204

 

作者说明:克里金插值程序

                            When running thisprogramme, the author’s PC setting is:

Microsoft Windows 7 (SP1) + Matlab R2011b +CPU 3.6GHz + RAM 8.0GB.

         (Data form Lab 2204; Check by Keung Charteris & T.s.road CZQ)

 

1.OriginKrigingTest.m  

模型参数:

Building model...done

Evaluating model at (2.54.5).

Prediction mean = 45.520671.Prediction variance = 5.092937.

Derivatives of: predictionmean = (0.842217 0.907005). prediction variance = (-1.41371e-015-1.66364e-016).

Leave-one-outcrossvalidation: 4.863764 (using the mean squared error function).

Integrated Mean Square Error:129.112898.

Marginal likelihood (-log):-17.055291.

Pseudo likelihood (-log):59.781924.

Process variance: 11.699252

Sigma(1,1): 0.000000 (firstelement of intrinsic covariance matrix).

Formatted regressionfunction: 0

Calculating derivatives forcontour plot... (may take a while).

模型效果:

几种Kriging插值方法的比较_第1张图片

Figure1. OriginKriging2204


2.BlindKrigingTest.m

模型参数:

Building model...done

Evaluating model at (2.54.5).

Prediction mean = 46.655437.Prediction variance = 4.758408.

Derivatives of: predictionmean = (1.91241 1.77632). prediction variance = (0.0952736 0.0566486).

Leave-one-outcrossvalidation: 3.210582 (using the mean squared error function).

Integrated Mean Square Error:142.703266.

Marginal likelihood (-log):-32.439011.

Pseudo likelihood (-log):48.082329.

Process variance: 3.983416

Sigma(1,1): 0.000000 (firstelement of intrinsic covariance matrix).

Formatted regressionfunction: 1++x2^2+x1^2x2+x1x2^2

Calculating derivatives forcontour plot... (may take a while).

模型效果:

  几种Kriging插值方法的比较_第2张图片

Figure 2. BlindKriging2204


3.RegressionKrigingTest.m

模型参数:

Building model...

### sqplab_armijo: stop ondxmin

            alpha      = 8.97409e-008

            |d|_inf    = 9.80257e-002

            |xp-x|_inf = 8.79692e-009

Iteration 20 of 400

Iteration 40 of 400

Iteration 60 of 400

Iteration 80 of 400

Iteration 100 of 400

Iteration 120 of 400

Iteration 140 of 400

Iteration 160 of 400

Iteration 180 of 400

Iteration 200 of 400

Iteration 220 of 400

Iteration 240 of 400

Iteration 260 of 400

Iteration 280 of 400

Iteration 300 of 400

Iteration 320 of 400

Iteration 340 of 400

Iteration 360 of 400

Iteration 380 of 400

Iteration 400 of 400

gridminimum =  61.292342397225681

ans =      0  0.947368421052631

optimHp =  0  0.866051449108001 -0.155706427886195

perf =     61.281551099583041

done

Evaluating model at (2.54.5).

Prediction mean = 44.947054.Prediction variance = 1.995047.

Derivatives of: predictionmean = (0.742334 0.417816). prediction variance = (9.83295e-017 1.53015e-017).

Leave-one-outcrossvalidation: 4.580646 (using the mean squared error function).

Integrated Mean Square Error:49.164545.

Marginal likelihood (-log):-15.751582.

Pseudo likelihood (-log):61.281551.

Process variance: 3.661791

Sigma(1,1): 1.000000 (firstelement of intrinsic covariance matrix).

Formatted regressionfunction: 0

Calculating derivatives forcontour plot... (may take a while).

 模型效果:

  

 几种Kriging插值方法的比较_第3张图片

Figure 3. RegressionKriging2204


4.StochasticKrigingTest.m    

模型参数:

Building model...done

Evaluating model at (2.54.5).

Prediction mean = 45.970621.Prediction variance = 245289024.547684.

Derivatives of: predictionmean = (5.33748e-009 6.68667e-009). prediction variance = (-1.05747e-010-6.31616e-011).

Leave-one-outcrossvalidation: 4659.638223 (using the mean squared error function).

Integrated Mean Square Error:11038006104.645782.

Marginal likelihood (-log):443.625659.

Pseudo likelihood (-log):748.535931.

Process variance:245289024.547684

Sigma(1,1): 1.886477 (firstelement of intrinsic covariance matrix).

Formatted regressionfunction: 0

Calculating derivatives forcontour plot... (may take a while).

模型效果:

几种Kriging插值方法的比较_第4张图片  

Figure 4. StochasticKriging2204

 

 

你可能感兴趣的:(kriging)