java-算法

1.大O表示法:

粗略的量度方法即算法的速度是如何与数据项的个数相关的

算法 大O表示法表示的运行时间

线性查找 O(N)

二分查找 O(logN)

无序数组的插入 O(1)

有序数组的插入 O(N)

无序数组的删除 O(N)

有序数组的删除 O(N)

O(1)是最优秀的,O(logN)良好,O(N)还可以,O(N2)稍差(在冒泡法中见到)

2. 排序

 public class JWzw { 
  
    //插入排序  
    public void insertArray(Integer[] in ) {  
        int tem = 0;  
        int num = 0;  
        int upnum = 0;  
        for (int i = 0; i < in .length; i++) {  
            for (int j = i - 1; j >= 0; j--) {  
                num++;  
                if ( in [j + 1] < in [j]) {  
                    tem = in [j + 1]; in [j + 1] = in [j]; in [j] = tem;  
                    upnum++;  
                } else {  
                    break;  
                }  
            }  
        }  
        for (int i = 0; i < in .length; i++) {  
            System.out.print( in [i]);  
            if (i < in .length - 1) {  
                System.out.print(",");  
            }  
        }  
        System.out.println();  
        System.out.println("插入排序循环次数:" + num);  
        System.out.println("移动次数:" + upnum);  
        System.out.print("\n\n\n");  
    }  
    //选择排序  
    public void chooseArray(Integer[] in ) {  
        int tem = 0;  
        int num = 0;  
        int upnum = 0;  
        for (int i = 0; i < in .length; i++) {  
            for (int j = i; j < in .length - 1; j++) {  
                num++;  
                if ( in [j + 1] < in [j]) {  
                    tem = in [j + 1]; in [j + 1] = in [j]; in [j] = tem;  
                    upnum++;  
                }  
            }  
        }  
        for (int i = 0; i < in .length; i++) {  
            System.out.print( in [i]);  
            if (i < in .length - 1) {  
                System.out.print(",");  
            }  
        }  
        System.out.println();  
        System.out.println("选择排序循环次数:" + num);  
        System.out.println("移动次数:" + upnum);  
        System.out.print("\n\n\n");  
    }  
    //冒泡排序  
    public void efferArray(Integer[] in ) {  
        int tem = 0;  
        int num = 0;  
        int upnum = 0;  
        for (int i = 0; i < in .length; i++) {  
            for (int j = i; j < in .length - 1; j++) {  
                num++;  
                if ( in [j + 1] < in [i]) {  
                    tem = in [j + 1]; in [j + 1] = in [i]; in [i] = tem;  
                    upnum++;  
                }  
            }  
        }  
        for (int i = 0; i < in .length; i++) {  
            System.out.print( in [i]);  
            if (i < in .length - 1) {  
                System.out.print(",");  
            }  
        }  
        System.out.println();  
        System.out.println("冒泡排序循环次数:" + num);  
        System.out.println("移动次数:" + upnum);  
        System.out.print("\n\n\n");  
    } 
    
    //打印乘法口诀  
    public void printMulti() {  
        for (int j = 1; j < 10; j++) {  
            for (int i = 1; i <= j; i++) {  
                System.out.print(i + " * " + j + " = " + j * i + "\t");  
            }  
            System.out.print("\t\n");  
        }  
        System.out.print("\n\n\n");  
    }  
    //打印N * 1 + N * 2 + N * 3 =num的所有组合  
    public void printNumAssemble(int num) {  
        for (int i = 0; i < num + 1; i++) {  
            for (int j = 0; j < num / 2 + 1; j++) {  
                for (int in = 0; in < num / 3 + 1; in ++) {  
                    if (i * 1 + j * 2 + in * 3 == num) {  
                        System.out.println("小马" + i + ",\t中马" + j + ",\t大马" + in );  
                    }  
                }  
            }  
        }  
    }  
    /** 
 
 * @param args 
 
 */  
    public static void main(String[] args) {  
        JWzw jwzw = new JWzw();  
        int num = 3;  
        jwzw.printMulti(); //打印乘法口诀  
        jwzw.printNumAssemble(100); //打印N * 1 + N * 2 + N * 3 =num的所有组合  
        Integer in [] = {  
            8, 89, 5, 84, 3, 45, 12, 33, 77, 98, 456, 878, 654, 213, 897  
        };  
        jwzw.efferArray( in ); //冒泡排序  
        Integer in1[] = {  
            8, 89, 5, 84, 3, 45, 12, 33, 77, 98, 456, 878, 654, 213, 897  
        };  
        jwzw.insertArray(in1); //插入排序  
        Integer in2[] = {  
            8, 89, 5, 84, 3, 45, 12, 33, 77, 98, 456, 878, 654, 213, 897  
        };  
        jwzw.chooseArray(in2); //选择排序  
        //int i = num++;  
        //System.out.println(i);  
        System.out.println(1000 >> 2);  
    }  
}  

3. 优先级队列

class PriorityQueue {  
    private long[] a = null;  
    private int nItems = 0;  
    private int maxSize = 0;  
    public PriorityQueue(int maxSize) {  
        a = new long[maxSize];  
        this.maxSize = maxSize;  
        nItems = 0;  
    }  
    public void insert(long l) {  
        //优先级队列的插入不是队尾,而是选择一个合适的按照某种顺序插入的  
        //当队列长度为0时,如下  
        //不为0时,将所有比要插入的数小的数据后移,这样大的数就在队列的头部了  
        int i = 0;  
        if (nItems == 0) {  
            a[0] = l;  
        } else {  
            for (i = nItems - 1; i >= 0; i--) {  
                if (l < a[i]) a[i + 1] = a[i];  
                else break;  
            }  
            a[i + 1] = l;  
        }  
        nItems++;  
    }  
    public long remove() {  
        //移出的是数组最上端的数,这样减少数组元素的移动  
        return a[--nItems];  
    }  
    public boolean isEmpty() {  
        return (nItems == 0);  
    }  
    public boolean isFull() {  
        return (nItems == maxSize);  
    }  
    public int size() {  
        return nItems;  
    }  
}  
public class duilie { // 队列体类  
    private duilie s;  
    private String data;  
    duilie(String data) {  
        this.data = data;  
    }  
    public String getData() {  
        return data;  
    }  
    public void setData(String data) {  
        this.data = data;  
    }  
    public duilie getS() {  
        return s;  
    }  
    public void setS(duilie s) {  
        this.s = s;  
    }  
}  
public class duiliecz { // 队列操作类  
    /** 
 
  * @param args 
 
  */  
    private int i = 0; // 队列长  
    private duilie top = new duilie(""); // 队列头  
    private duilie end = new duilie(""); // 队列尾  
    public void add(String s) { // 添加队列  
        duilie m = new duilie(s);  
        if (i != 0) {  
            m.setS(top.getS());  
            top.setS(m);  
        } else {  
            top.setS(m);  
            end.setS(m);  
        }  
        i++;  
    }  

4. 队列

public void del() { // 删除队尾  
    if (i == 0) {  
        return;  
    } else if (i == 1) {  
        top.setS(null);  
        end.setS(null);  
    } else {  
        duilie top1 = new duilie(""); // 队列底查找用缓存  
        top1.setS(top.getS());  
        while (!top1.getS().getS().equals(end.getS())) {  
            top1.setS(top1.getS().getS());  
        }  
        end.setS(top1.getS());  
    }  
    i--;  
}  
public static void main(String[] args) {  
    // TODO Auto-generated method stub  
    duiliecz m = new duiliecz();  
    m.add("1");  
    m.add("2");  
    m.add("3");  
    m.add("4");  
    for (int n = 0; n < 4; n++) {  
        m.del();  
    }  
}  
public int getI() {  
    return i;  
}  
public duilie getEnd() {  
    return end;  
}  
public duilie getTop() {  
    return top;  
}  
}  

5. 栈

public class Stack {  
    int[] arr;  
    int len = 0;  
    public Stack() {  
        arr = new int[100];  
    }  
    public Stack(int n) {  
        arr = new int[n];  
    }  
    public int size() {  
        return len + 1;  
    }  
    // 扩大数组  
    public void resize() {  
        int[] b = new int[arr.length * 2];  
        System.arraycopy(arr, 0, b, 0, arr.length);  
        arr = b;  
    }  
    public void show() {  
        for (int i = 0; i < len; i++) {  
            System.out.print(arr[i] + "  ");  
        }  
        System.out.println();  
    }  
    // 进栈  
    public void push(int a) {  
        if (len >= arr.length) resize();  
        arr[len] = a;  
        len++;  
    }  
    // 出栈  
    public int pop() {  
        if (len == 0) {  
            System.out.println();  
            System.out.println("stack is empty!");  
            return -1;  
        }  
        int a = arr[len - 1];  
        arr[len - 1] = 0;  
        len--;  
        return a;  
    }  
}  

6. 链表

class Node {  
    Object data;  
    Node next;  
    public Node(Object data) {  
        setData(data);  
    }  
    public void setData(Object data) {  
        this.data = data;  
    }  
    public Object getData() {  
        return data;  
    }  
}  
class Link {  
    Node head;  
    int size = 0;  
    public void add(Object data) {  
        Node n = new Node(data);  
        if (head == null) {  
            head = n;  
        } else {  
            Node current = head;  
            while (true) {  
                if (current.next == null) {  
                    break;  
                }  
                current = current.next;  
            }  
            current.next = n;  
        }  
        size++;  
    }  
    public void show() {  
        Node current = head;  
        if (current != null) {  
            while (true) {  
                System.out.println(current);  
                if (current == null) {  
                    break;  
                }  
                current = current.next;  
            }  
        } else {  
            System.out.println("link is empty");  
        }  
    }  
    public Object get(int index) {  
        // ....  
    }  
    public int size() {  
        return size;  
    }  
}  

7. 单链表

class Node // 节点类,单链表上的节点  
{  
    String data; // 数据域,存放String类的数据  
    Node next; // 指向下一个节点  
    Node(String data) {  
        this.data = data; // 构造函数  
    }  
    String get() {  
        return data; // 返回数据  
    }  
}  
class MyLinkList // 链表类  
{  
    Node first; // 头节点  
    int size; // 链表长度  
    MyLinkList(String arg[]) {  
        // Node first = new Node("head");//生成头节点  
        first = new Node("head"); // J.F. 这里不需要定义局部变量 first  
        // 如果定义了局部变量,那成员变量 first 就一直没有用上  
        // 所以,它一直为空  
        size = 0;  
        Node p = first;  
        for (int i = 0; i < arg.length; i++) // 将arg数组中的元素分别放入链表中  
        {  
            Node q = new Node(arg[i]);  
            q.next = p.next; // 每一个节点存放一个arg数组中的元素  
            p.next = q;  
            p = p.next;  
            size++;  
        }  
    }  
    MyLinkList() // 无参数构造函数  
    {  
        // Node first = new Node("head");  
        first = new Node("head"); // J.F. 这里犯了和上一个构造方法同样的错误  
        size = 0;  
    }  
    int size() // 返回链表长度  
    {  
        return size;  
    }  
    void insert(Node a, int index) // 将节点a 插入链表中的第index个位置  
    {  
        Node temp = first;  
        for (int i = 0; i < index; i++) {  
            temp = temp.next; // 找到插入节点的前一节点  
        }  
        a.next = temp.next; // 插入节点  
        temp.next = a;  
        size++;  
    }  
    Node del(int index) // 删除第index个节点,并返回该值  
    {  
        Node temp = first;  
        for (int i = 0; i < index; i++) {  
            temp = temp.next; // 找到被删除节点的前一节点  
        }  
        Node node = temp.next;  
        temp.next = node.next;  
        size--; // 删除该节点,链表长度减一  
        return node;  
    }  
    void print() // 在屏幕上输出该链表(这段程序总是出错,不知道错在哪里)  
    {  
        Node temp = first;  
        for (int i = 1; i < size; i++) // 将各个节点分别在屏幕上输出  
        {  
            temp = temp.next;  
            System.out.print(temp.get() + "->");  
        }  
    }  
    void reverse() // 倒置该链表  
    {  
        for (int i = 0; i < size; i++) {  
            insert(del(size - 1), 0); // 将最后一个节点插入到最前  
            // J.F. 最后一个节点的 index 应该是 size - 1  
            // 因为第一个节点的 index 是 0  
        }  
    }  
    String get(int index) // 查找第index个节点,返回其值  
    {  
        if (index >= size) {  
            return null;  
        }  
        Node temp = first;  
        for (int i = 0; i < index; i++) {  
            temp = temp.next; // 找到被查找节点的前一节点  
        }  
        return temp.next.get();  
    }  
}  
class MyStack // 堆栈类,用单链表实现  
{  
    MyLinkList tmp;  
    Node temp;  
    MyStack() {  
        // MyLinkList tmp = new MyLinkList();  
        tmp = new MyLinkList(); // J.F. 和 MyLinkList 构造方法同样的错误  
    }  
    void push(String a) // 压栈,即往链表首部插入一个节点  
    {  
        Node temp = new Node(a);  
        tmp.insert(temp, 0);  
    }  
    String pop() // 出栈,将链表第一个节点删除  
    {  
        Node a = tmp.del(0);  
        return a.get();  
    }  
    int size() {  
        return tmp.size();  
    }  
    boolean empty() // 判断堆栈是否为空  
    {  
        if (tmp.size() == 0) return false;  
        else return true;  
    }  
}  
public class MyLinkListTest // 测试程序部分  
{  
    public static void main(String arg[]) // 程序入口  
    {  
        if ((arg.length == 0) || (arg.length > 10)) System.out.println("长度超过限制或者缺少参数");  
        else {  
            MyLinkList ll = new MyLinkList(arg); // 创建一个链表  
            ll.print(); // 先输出该链表(运行到这一步抛出异常)  
            ll.reverse(); // 倒置该链表  
            ll.print(); // 再输出倒置后的链表  
            String data[] = new String[10];  
            int i;  
            for (i = 0; i < ll.size(); i++) {  
                data[i] = ll.get(i); // 将链表中的数据放入数组  
            }  
            // sort(data);// 按升序排列data中的数据(有没有现成的排序函数?)  
            for (i = 0; i < ll.size(); i++) {  
                System.out.print(data[i] + ";"); // 输出数组中元素  
            }  
            System.out.println();  
            MyStack s = new MyStack(); // 创建堆栈实例s  
            for (i = 0; i < ll.size(); i++) {  
                s.push(data[i]); // 将数组元素压栈  
            }  
            while (!s.empty()) {  
                System.out.print(s.pop() + ";"); // 再将堆栈里的元素弹出  
            }  
        }  
    }  
}  

8. 双端链表

class Link {  
    public int iData = 0;  
    public Link next = null;  
    public Link(int iData) {  
        this.iData = iData;  
    }  
    public void display() {  
        System.out.print(iData + " ");  
    }  
}  
class FirstLastList {  
    private Link first = null;  
    private Link last = null;  
    public FirstLastList() {  
        first = null;  
        last = null;  
    }  
    public void insertFirst(int key) {  
        Link newLink = new Link(key);  
        if (this.isEmpty()) last = newLink;  
        newLink.next = first;  
        first = newLink;  
    }  
    public void insertLast(int key) {  
        Link newLink = new Link(key);  
        if (this.isEmpty()) first = newLink;  
        else last.next = newLink;  
        last = newLink;  
    }  
    public Link deleteFirst() {  
        Link temp = first;  
        if (first.next == null) last = null;  
        first = first.next;  
        return temp;  
    }  
    public boolean isEmpty() {  
        return (first == null);  
    }  
    public void displayList() {  
        System.out.print("List (first-->last): ");  
        Link current = first;  
        while (current != null) {  
            current.display();  
            current = current.next;  
        }  
        System.out.println("");  
    }  
}  
class FirstLastListApp {  
    public static void main(String[] args) {  
        // TODO Auto-generated method stub  
        FirstLastList theList = new FirstLastList();  
        theList.insertFirst(22); // insert at front  
        theList.insertFirst(44);  
        theList.insertFirst(66);  
        theList.insertLast(11); // insert at rear  
        theList.insertLast(33);  
        theList.insertLast(55);  
        theList.displayList(); // display the list  
        theList.deleteFirst(); // delete first two items  
        theList.deleteFirst();  
        theList.displayList(); // display again  
    }  
}  

9. 有序链表

package arithmetic;  
class Link {  
    public int iData = 0;  
    public Link next = null;  
    public Link(int iData) {  
        this.iData = iData;  
    }  
    public void display() {  
        System.out.print(iData + " ");  
    }  
}  
class SortedList {  
    private Link first = null;  
    public SortedList() {  
        first = null;  
    }  
    public void insert(int key) {  
        Link newLink = new Link(key);  
        Link previous = null;  
        Link current = first;  
        // while的第一个条件是没有到达链表的尾端,第二个是按顺序找到一个合适的位置  
        while (current != null && key > current.iData) {  
            previous = current;  
            current = current.next;  
        }  
        // 如果是空表或者要插入的元素最小,则在表头插入key  
        if (current == first) first = newLink;  
        else previous.next = newLink;  
        newLink.next = current;  
    }  
    /** 
 
 * 删除表头的节点 
 
 * 
 
 * @return 要删除的节点 
 
 */  
    public Link remove() {  
        Link temp = first;  
        first = first.next;  
        return temp;  
    }  
    public boolean isEmpty() {  
        return (first == null);  
    }  
    public void displayList() {  
        System.out.print("List (first-->last): ");  
        Link current = first; // start at beginning of list  
        while (current != null) // until end of list,  
        {  
            current.display(); // print data  
            current = current.next; // move to next link  
        }  
        System.out.println("");  
    }  
}  
class SortedListApp {  
    public static void main(String[] args) { // create new list  
        SortedList theSortedList = new SortedList();  
        theSortedList.insert(20); // insert 2 items  
        theSortedList.insert(40);  
        theSortedList.displayList(); // display list  
        theSortedList.insert(10); // insert 3 more items  
        theSortedList.insert(30);  
        theSortedList.insert(50);  
        theSortedList.displayList(); // display list  
        theSortedList.remove(); // remove an item  
        theSortedList.displayList(); // display list  
    }  
}  

10. 双向链表

class Link {  
    // 双向链表,有两个指针,一个向前,一个向后  
    public int iData = 0;  
    public Link previous = null;  
    public Link next = null;  
    public Link(int iData) {  
        this.iData = iData;  
    }  
    public void display() {  
        System.out.print(iData + " ");  
    }  
}  
class DoublyLinked {  
    // 分别指向链表的表头和表尾  
    private Link first = null;  
    private Link last = null;  
    public boolean isEmpty() {  
        return first == null;  
    }  
    /** 
 
 * 在表头插入数据 
 
 * 
 
 * @param 要插入的节点的数据 
 
 */  
    public void insertFirst(int key) {  
        Link newLink = new Link(key);  
        // 如果开始链表为空,则插入第一个数据后,last也指向第一个数据  
        if (this.isEmpty()) last = newLink;  
        else { // 表不为空的情况  
            first.previous = newLink;  
            newLink.next = first;  
        }  
        // 无论怎样,插入后都的让first重新指向第一个节点  
        first = newLink;  
    }  
    public void insertLast(int key) { // 在尾端插入数据,同上  
        Link newLink = new Link(key);  
        if (this.isEmpty()) first = newLink;  
        else {  
            last.next = newLink;  
            newLink.previous = last;  
        }  
        last = newLink;  
    }  
    /** 
 
 * 在指定的节点后插入数据 
 
 * 
 
 * @param key 
 
 *            指定的节点的值 
 
 * @param iData 
 
 *            要插入的数据 
 
 * @return 是否插入成功 
 
 */  
    public boolean insertAfter(int key, int iData) {  
        Link newLink = new Link(key);  
        Link current = first;  
        // 从first开始遍历,看能否找到以key为关键字的节点  
        while (current.iData != key) {  
            current = current.next;  
            // 若能找到就跳出循环,否则返回false,插入失败  
            if (current == null) return false;  
        }  
        // 如果插入点在last的位置  
        if (current == last) {  
            last = newLink;  
        } else { // 非last位置,交换各个next和previous的指针  
            newLink.next = current.next;  
            current.next.previous = newLink;  
        }  
        current.next = newLink;  
        newLink.previous = current;  
        return true;  
    }  
    /** 
 
 * 删除表头的节点 
 
 * 
 
 * @return 
 
 */  
    public Link deleteFirst() {  
        Link temp = first;  
        // 如果表中只有一个元素,删除后则为空表,所以last=null  
        if (first.next == null) last = null;  
        else  
        // 否则,让第二个元素的previous=null  
            first.next.previous = null;  
        // 删除头指针,则first指向原来的second  
        first = first.next;  
        return temp;  
    }  
    public Link deleteLast() { // 同上  
        Link temp = last;  
        if (last.previous == null) first = null;  
        else last.previous.next = null;  
        last = last.previous;  
        return temp;  
    }  
    public Link deleteKey(int key) {  
        Link current = first;  
        // 遍历整个链表查找对应的key,如果查到跳出循环,否则...  
        while (current.iData != key) {  
            current = current.next;  
            // ...否则遍历到表尾,说明不存在此key,返回null,删除失败  
            if (current == null) return null;  
        }  
        if (current == first) first = first.next;  
        else current.previous.next = current.next;  
        if (current == last) last = last.previous;  
        else current.next.previous = current.previous;  
        return current;  
    }  
    public void displayForward() {  
        Link current = first;  
        while (current != null) {  
            current.display();  
            current = current.next;  
        }  
        System.out.println();  
    }  
    public void displayBackward() {  
        Link current = last;  
        while (current != null) {  
            current.display();  
            current = current.previous;  
        }  
        System.out.println();  
    }  
}  
class DoublyLinkedApp {  
    public static void main(String[] args) { // make a new list  
        DoublyLinked theList = new DoublyLinked();  
        theList.insertFirst(22); // insert at front  
        theList.insertFirst(44);  
        theList.insertFirst(66);  
        theList.insertLast(11); // insert at rear  
        theList.insertLast(33);  
        theList.insertLast(55);  
        theList.displayForward(); // display list forward  
        theList.displayBackward(); // display list backward  
        theList.deleteFirst(); // delete first item  
        theList.deleteLast(); // delete last item  
        theList.deleteKey(11); // delete item with key 11  
        theList.displayForward(); // display list forward  
        theList.insertAfter(22, 77); // insert 77 after 22  
        theList.insertAfter(33, 88); // insert 88 after 33  
        theList.displayForward(); // display list forward  
    }  
}  

11. 实现二叉树前序遍历迭代器

class TreeNode这个类用来声明树的结点,其中有左子树、右子树和自身的内容。  
class MyTree这个类用来声明一棵树,传入根结点。这里设计的比较简单  
class TreeEum这个类是树的迭代器,通过 MyTree类的方法获取,这里主要就是设计它了。代码如下:  
//TreeNode类,使用了泛型,由于比较简单,考试.大提示不作解释  
   class TreeNode < E > {  
    E node;    
    private TreeNode < String > left;    
    private TreeNode < String > right;    
    public TreeNode(E e) {    
        this(e, null, null);  
    }    
    public TreeNode(E e, TreeNode < String > left, TreeNode < String > right) {    
        this.node = e;    
        this.left = left;    
        this.right = right;  
    }    
    public TreeNode < String > left() {    
        return left;  
    }    
    public TreeNode < String > right() {    
        return right;  
    }  
}  
// MyTree类,没什么功能,传入根结点构造,getEnumerator()方法获取迭代器。  
    
class MyTree {  
    TreeNode < String > root;    
    public MyTree(TreeNode < String > root) {    
        this.root = root;  
    }    
    public TreeEnum getEnumerator() {    
        return new TreeEnum(root);  
    }  
}  
// 这个类为迭代器,有详细解释,相信各位能看懂。在栈中用了两次泛型。  
    
import java.util.Stack;    
public class TreeEnum {    
    private TreeNode < String > root;    
    private Stack < TreeNode < String >> store; /* 保存遍历左子树但未遍历右子树的结点 */     
    private TreeNode < String > next;    
    public TreeEnum(TreeNode < String > root) {    
        this.root = root;  
        store = new Stack < TreeNode < String >> ();  
        next = root;  
    }    
    public TreeNode < String > next() {  
        TreeNode < String > current = next;    
        if (next != null) {  
            /* 如果当前结点的左子树不为空,则遍历左子树,并标记当前结点未遍历右子树 */  
                
            if (next.left() != null) {  
                store.push(next);  
                next = next.left();  
            }  
            // 如果当前结点的左子树为空,则遍历右子树  
                
            else if (next.right() != null) {  
                next = next.right();  
            }  
            /* 如果当前结点为叶子,则找未遍历右子树的结点并且遍历它的右子树 */  
                
            else {    
                if (!store.empty()) /* 判断是否还有结点的右子树未遍历 */ {  
                    TreeNode < String > tmp = store.pop();  
                    /* 如果有未遍历右子树的结点,但它的右子树为空,且还有结点的右子树未遍历, */  
                    /* 则一直往上取,直到取到未遍历右子树且右子树不为空的结点,遍历它的右子树. */  
                        
                    while ((tmp.right() == null) && !store.empty()) {  
                        tmp = store.pop();  
                    }  
                    next = tmp.right();  
                }    
                else {  
                    /* 如果没有哪个结点右子树未遍历,则表示没有下一个结点了,设置next为null */  
                    next = null;  
                }  
            }  
        }    
        return current;  
    }    
    public boolean hasMoreElement() {    
        return next != null;  
    }  
}  下面写个测试类,不作解释,相信大家看得懂    
public class TreeReader {    
    public static void main(String[] args) {  
        TreeNode < String > n1 = new TreeNode < String > ("n1");  
        TreeNode < String > n2 = new TreeNode < String > ("n2");  
        TreeNode < String > n3 = new TreeNode < String > ("n3");  
        TreeNode < String > n4 = new TreeNode < String > ("n4");  
        TreeNode < String > n5 = new TreeNode < String > ("n5");  
        TreeNode < String > n6 = new TreeNode < String > ("n6", null, n1);  
        TreeNode < String > n7 = new TreeNode < String > ("n7", n2, null);  
        TreeNode < String > n8 = new TreeNode < String > ("n8", n7, null);  
        TreeNode < String > n9 = new TreeNode < String > ("n9", null, n5);  
        TreeNode < String > n10 = new TreeNode < String > ("n10", n4, n9);  
        TreeNode < String > n11 = new TreeNode < String > ("n11", n6, n8);  
        TreeNode < String > n12 = new TreeNode < String > ("n12", n3, n10);  
        TreeNode < String > root = new TreeNode < String > ("root", n11, n12);  
        MyTree tree = new MyTree(root);  
        TreeEnum eum = tree.getEnumerator();    
        while (eum.hasMoreElement()) {  
            System.out.print(eum.next().node + "--");  
        }  
        System.out.println("end");  
    }  
}  

12. 迭代器

package TreeIterator;  
public interface Iterator {  
    public boolean hasNext();  
    public Object next();  
    
}

这个接口我们有 2个方法, hasNext()是否还有下一条数据, next返回具体的 Object这里也就是树。我们先不必要忙着做他的实现类,我们现在要来做的是这个容器(不是 JAVA中容器,与 arraylist什么的无关),正所谓树的容器是什么,是山也!我们想想山应该具有什么呢!?首先它要有种植树的功能,这里可以看作添加树。我们可以想像山的功能是和树相互关联的,那么他们之间是什么关系呢,我们给他们一种聚合的关系,聚合的关系大家可以参考 UML图,我在这里给出它的一种程序表现形式。

package TreeIterator;  
public class Hall {  
    Tree[] tree; // 这里可以看作是聚合关系  
    private int index; // 指向Tree[]的标签  
    public Hall(int maxNumber) {  
        tree = new Tree[maxNumber];  
        index = 0;  
    }  
    public void add(Tree tree) {  
        this.tree[index] = tree;  
        index++;  
    }  
    public Iterator connectIterator() {  
        return new TreeIterator(this);  
    }  
}  

这里我们定义的山可以抽象出
Hall类来, Tree[] tree可以看作是山和树之间的一种聚合关系。 add方法就是添加树。问题来了,山和树有了关系,那么山和迭代器有什么关系呢。它们之间肯定有一种关系。我们有了这个容器(山),就要把这个容器来实现迭代的方法: hasNext()和 Next().恩这里我们可以看出,山和迭代器之间也是一种关联关系。我们就把它看成是一种聚合关系(TIP:聚合关系一种特殊的关联关系)。我们可以通过一个 connectIterator方法来链接山和迭代器,接下来我们要去做一个具体的迭代类,这个具体的类中间有了 hasNext()和 Next()的具体实现方法

package TreeIterator;  
public class TreeIterator implements Iterator {  
    private int last = 0;  
    private Hall hall;  
    public TreeIterator(Hall hall) {  
        this.hall = hall;  
    }  
    public boolean hasNext() {  
        if (last < hall.tree.length) return true;  
        else return false;  
    }  
    public Tree next() {  
        Tree t = hall.tree[last];  
        last++;  
        return t;  
    }  
}  
  

这里Hall hall就可以看作是一种关联关系,我们要把山和迭代器联系起来就通过构造函数来实现, hasNext和 next实现方法就体现出来了有了山,有了迭代器,可是树还没有定义,不过这个树的方法还很好解决!树不关联其他的事务,我们可以简单的这么写:

package TreeIterator;  
public class Tree {  
    private String name;  
    public Tree(String name) {  
        this.name = name;  
    }  
    public String getName() {  
        return this.name;  
    }  
}  

好了似乎我们整个工程完工了,我们现在来模拟一下农民老大伯来种树撒肥的过程;

package TreeIterator;  
public class Pren {  
    public Pren() {}  
    public static void main(String[] args) {  
        Hall hall = new Hall(4);  
        hall.add(new Tree("苹果树"));  
        hall.add(new Tree("梨树"));  
        hall.add(new Tree("橘子树"));  
        hall.add(new Tree("凤梨树"));  
        for (Iterator i = hall.connectIterator(); i.hasNext();) {  
            String Type = ((Tree)(i.next())).getName();  
            if (Type == "苹果树") {  
                System.out.println("洒苹果树的农药,");  
            }  
            if (Type == "梨树") {  
                System.out.println("洒梨树的农药");  
            }  
            if (Type == "橘子树") {  
                System.out.println("洒橘子树的农药,洒了也没用,还没到成熟日,现在没结果实");  
            }  
            if (Type == "凤梨树") {  
                System.out.println("南风天,湿气大,让它烂在地里吧");  
            }  
        }  
    }  
}  

种4个树,山小而五脏俱全,更像一个土包,再要有树才行啊,所以 4个树的实例出现。好了接下来种树,几毫秒解决!山了有我们就要把山放到迭代器中间去了。遍历这个山(容器)。联想我们看看 arrayList中的迭代器模式是怎么实现的!

ArrayList a = new ArrayList();  
a.add("a1");  
a.add("a2");  
a.add("a3");  
a.add("a4");  
for (Iterator i = a.iterator(); i.hasNext();) {  
    System.out.println(i.next().toString());  
}  
  1. 合并搜索算法
public class MergeSortArray {  
    private long[] theArray;  
    private int nElems;  
    public MergeSortArray(int max) {  
        theArray = new long[max];  
        nElems = 0;  
    }  
    public void insert(long value) {  
        theArray[nElems] = value; // insert it  
        nElems++; // increment size  
    }  
    public void display() {  
        for (int j = 0; j < nElems; j++) System.out.print(theArray[j] + " ");  
        System.out.println("");  
    }  
    public void mergeSort() {  
        long[] workSpace = new long[nElems];  
        recMergeSort(workSpace, 0, nElems - 1);  
    }  
    private void recMergeSort(long[] workSpace, int lowerBound, int upperBound) {  
        if (lowerBound == upperBound) // if range is 1,  
            return; // no use sorting  
        else { // find midpoint  
            int mid = (lowerBound + upperBound) / 2;  
            // sort low half  
            recMergeSort(workSpace, lowerBound, mid);  
            // sort high half  
            recMergeSort(workSpace, mid + 1, upperBound);  
            // merge them  
            merge(workSpace, lowerBound, mid + 1, upperBound);  
        }  
    }  
    private void merge(long[] workSpace, int lowPtr, int highPtr, int upperBound) {  
        int j = 0; // workspace index  
        int lowerBound = lowPtr;  
        int mid = highPtr - 1;  
        int n = upperBound - lowerBound + 1; // # of items  
        while (lowPtr <= mid && highPtr <= upperBound)  
            if (theArray[lowPtr] < theArray[highPtr]) workSpace[j++] = theArray[lowPtr++];  
            else workSpace[j++] = theArray[highPtr++];  
        while (lowPtr <= mid) workSpace[j++] = theArray[lowPtr++];  
        while (highPtr <= upperBound) workSpace[j++] = theArray[highPtr++];  
        for (j = 0; j < n; j++) theArray[lowerBound + j] = workSpace[j];  
    }  
    public static void main(String[] args) {  
        int maxSize = 100; // array size  
        MergeSortArray arr = new MergeSortArray(maxSize); // create the array  
        arr.insert(14);  
        arr.insert(21);  
        arr.insert(43);  
        arr.insert(50);  
        arr.insert(62);  
        arr.insert(75);  
        arr.insert(14);  
        arr.insert(2);  
        arr.insert(39);  
        arr.insert(5);  
        arr.insert(608);  
        arr.insert(36);  
        arr.display();  
        arr.mergeSort();  
        arr.display();  
    }  
}  

14. 递归

public class Recursion {  
     
    public static void main(String[] args) {  
        // TODO Auto-generated method stub  
        Recursion re = new Recursion();  
        System.out.println(re.RecursionNum(10));  
    }  
    public int RecursionNum(int num) {  
        if (num > 0) {  
            return num + RecursionNum(num - 1);  
        }  
        Else {  
            return 0;  
        }  
    }  
}  

15. 归并排序

/** 
 
 * 归并排序,要求待排序的数组必须实现Comparable接口 
 
 */  
public class MergeSort implements SortStrategy {  
    private Comparable[] bridge;  
    /** 
 
 * 利用归并排序算法对数组obj进行排序 
 
 */  
    public void sort(Comparable[] obj) {  
        if (obj == null) {  
            throw new NullPointerException("The param can not be null!");  
        }  
        bridge = new Comparable[obj.length]; // 初始化中间数组  
        mergeSort(obj, 0, obj.length - 1); // 归并排序  
        bridge = null;  
    }  
    /** 
 
 * 将下标从left到right的数组进行归并排序 
 
 * 
 
 * @param obj 
 
 *            要排序的数组的句柄 
 
 * @param left 
 
 *            要排序的数组的第一个元素下标 
 
 * @param right 
 
 *            要排序的数组的最后一个元素的下标 
 
 */  
    private void mergeSort(Comparable[] obj, int left, int right) {  
        if (left < right) {  
            int center = (left + right) / 2;  
            mergeSort(obj, left, center);  
            mergeSort(obj, center + 1, right);  
            merge(obj, left, center, right);  
        }  
    }  
    /** 
 
 * 将两个对象数组进行归并,并使归并后为升序。归并前两个数组分别有序 
 
 * 
 
 * @param obj 
 
 *            对象数组的句柄 
 
 * @param left 
 
 *            左数组的第一个元素的下标 
 
 * @param center 
 
 *            左数组的最后一个元素的下标 
 
 * @param right 
 
 *            右数组的最后一个元素的下标 
 
 */  
    private void merge(Comparable[] obj, int left, int center, int right) {  
        int mid = center + 1;  
        int third = left;  
        int tmp = left;  
        while (left <= center && mid <= right) { // 从两个数组中取出小的放入中间数组  
            if (obj[left].compareTo(obj[mid]) <= 0) {  
                bridge[third++] = obj[left++];  
            } else bridge[third++] = obj[mid++];  
        }  
        // 剩余部分依次置入中间数组  
        while (mid <= right) {  
            bridge[third++] = obj[mid++];  
        }  
        while (left <= center) {  
            bridge[third++] = obj[left++];  
        }  
        // 将中间数组的内容拷贝回原数组  
        copy(obj, tmp, right);  
    }  
    /** 
 
 * 将中间数组bridge中的内容拷贝到原数组中 
 
 * 
 
 * @param obj 
 
 *            原数组的句柄 
 
 * @param left 
 
 *            要拷贝的第一个元素的下标 
 
 * @param right 
 
 *            要拷贝的最后一个元素的下标 
 
 */  
    private void copy(Comparable[] obj, int left, int right) {  
        while (left <= right) {  
            obj[left] = bridge[left];  
            left++;  
        }  
    }  
}  

16. 希尔排序

间隔序列:  
h = 3 * h + 1, h = (h - 1) / 3  
public class ShellSort {  
    /** 
 
 * @param args 
 
 */  
    public static void main(String[] args) {  
        // TODO Auto-generated method stub  
        ShellSort ss = new ShellSort();  
        int num[] = {  
            546, 87, 21, 3124, 65, 2, 9, 3, 213, 54, 98, 23, 6, 4, 7,  
            8, 123, 872, 61, 5, 8954  
        };  
        ss.shellArray(num);  
        for (int i = 0; i < num.length; i++) {  
            System.out.println(num[i]);  
        }  
    }  
    public void shellArray(int[] num) {  
        int i = 1;  
        int tem, in ;  
        for (; i < num.length / 3;) {  
            i = 3 * i + 1;  
        }  
        for (; i >= 1;) {  
            for (int j = i; j < num.length; j++) {  
                tem = num[j]; in = j;  
                while ( in > i - 1 && num[ in -i] >= tem) {  
                    num[ in ] = num[ in -i]; in = in -i;  
                }  
                num[ in ] = tem;  
            }  
            i = (i - 1) / 3;  
        }  
    }  
}  

17. 快速排序

class QuickSort {  
    private int[] data;  
    QuickSort(int[] data) {  
        this.data = data;  
    }  
    public void quickSort() {  
        recQuickSort(data, 0, data.length - 1);  
    }  
    private void recQuickSort(int[] data, int low, int high) {  
        // 设置两个滑标  
        int lowCursor = low + 1;  
        int highCursor = high;  
        // 交换时的临时变量  
        int temp = 0;  
        // 比较枢值,设为数组的第一个值  
        int medi = data[low];  
        while (true) {  
            // 从低端开始查找,确定大于数 data[low] 所在的位置  
            while (lowCursor < high && data[lowCursor] < medi) {  
                lowCursor++;  
            }  
            // 从高端开始查找,确定小于数 data[low] 所在的位置。这里要使用 >= 判断确定小于值  
            while (highCursor > low && data[highCursor] >= medi) {  
                highCursor--;  
            }  
            // 两游标位置出现越界,退出循环  
            if (lowCursor >= highCursor) {  
                break;  
            }  
            // 交换 data[highCursor] 和 data[lowCursor] 位置数据  
            temp = data[highCursor];  
            data[highCursor] = data[lowCursor];  
            data[lowCursor] = temp;  
        }  
        // 由 while 循环退出条件可知:lowCursor > highCursor  
        // 当前 lowCursor 指向右侧大于 data[low]的第一个位置;  
        // 而 highCursor 指向左侧小于 data[low]的第一个位置,所以需要交换 data[low] 和  
        // data[highCursor]的值  
        data[low] = data[highCursor];  
        data[highCursor] = medi;  
        // 递归运算左半部分  
        if (low < highCursor) {  
            recQuickSort(data, low, highCursor);  
        }  
        // 递归运算右半部分  
        if (lowCursor < high) {  
            recQuickSort(data, lowCursor, high);  
        }  
    }  
    public void display() {  
        for (int i = 0; i < data.length; i++) {  
            System.out.print(data[i] + " ");  
        }  
        System.out.println();  
    }  
    public static void main(String[] args) {  
        int[] data = new int[] {  
            43, 12, 32, 55, 33, 67, 54, 65, 43, 22, 66,  
            98, 74  
        };  
        QuickSort sort = new QuickSort(data);  
        sort.display();  
        sort.quickSort();  
        sort.display();  
    }  
}  

18. 二叉树

//******************************************************************************************************//  
//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//  
//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//  
//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//  
//*******************************CopyRight By phoenix*******************************************//  
//************************************Jan 12,2008*************************************************//  
//****************************************************************************************************//  
public class BinTree {  
    public final static int MAX = 40;  
    BinTree[] elements = new BinTree[MAX]; // 层次遍历时保存各个节点  
    int front; // 层次遍历时队首  
    int rear; // 层次遍历时队尾  
    private Object data; // 数据元数  
    private BinTree left, right; // 指向左,右孩子结点的链  
    public BinTree() {}  
    public BinTree(Object data) { // 构造有值结点  
        this.data = data;  
        left = right = null;  
    }  
    public BinTree(Object data, BinTree left, BinTree right) { // 构造有值结点  
        this.data = data;  
        this.left = left;  
        this.right = right;  
    }  
    public String toString() {  
        return data.toString();  
    }  
    // 前序遍历二叉树  
    public static void preOrder(BinTree parent) {  
        if (parent == null) return;  
        System.out.print(parent.data + " ");  
        preOrder(parent.left);  
        preOrder(parent.right);  
    }  
    // 中序遍历二叉树  
    public void inOrder(BinTree parent) {  
        if (parent == null) return;  
        inOrder(parent.left);  
        System.out.print(parent.data + " ");  
        inOrder(parent.right);  
    }  
    // 后序遍历二叉树  
    public void postOrder(BinTree parent) {  
        if (parent == null) return;  
        postOrder(parent.left);  
        postOrder(parent.right);  
        System.out.print(parent.data + " ");  
    }  
    // 层次遍历二叉树  
    public void LayerOrder(BinTree parent) {  
        elements[0] = parent;  
        front = 0;  
        rear = 1;  
        while (front < rear) {  
            try {  
                if (elements[front].data != null) {  
                    System.out.print(elements[front].data + " ");  
                    if (elements[front].left != null) elements[rear++] = elements[front].left;  
                    if (elements[front].right != null) elements[rear++] = elements[front].right;  
                    front++;  
                }  
            } catch (Exception e) {  
                break;  
            }  
        }  
    }  
    // 返回树的叶节点个数  
    public int leaves() {  
        if (this == null) return 0;  
        if (left == null && right == null) return 1;  
        return (left == null ? 0 : left.leaves()) + (right == null ? 0 : right.leaves());  
    }  
    // 结果返回树的高度  
    public int height() {  
        int heightOfTree;  
        if (this == null) return -1;  
        int leftHeight = (left == null ? 0 : left.height());  
        int rightHeight = (right == null ? 0 : right.height());  
        heightOfTree = leftHeight < rightHeight ? rightHeight : leftHeight;  
        return 1 + heightOfTree;  
    }  
    // 如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层  
    public int level(Object object) {  
        int levelInTree;  
        if (this == null) return -1;  
        if (object == data) return 1; // 规定根节点为第一层  
        int leftLevel = (left == null ? -1 : left.level(object));  
        int rightLevel = (right == null ? -1 : right.level(object));  
        if (leftLevel < 0 && rightLevel < 0) return -1;  
        levelInTree = leftLevel < rightLevel ? rightLevel : leftLevel;  
        return 1 + levelInTree;  
    }  
    // 将树中的每个节点的孩子对换位置  
    public void reflect() {  
        if (this == null) return;  
        if (left != null) left.reflect();  
        if (right != null) right.reflect();  
        BinTree temp = left;  
        left = right;  
        right = temp;  
    }  
    // 将树中的所有节点移走,并输出移走的节点  
    public void defoliate() {  
        if (this == null) return;  
        // 若本节点是叶节点,则将其移走  
        if (left == null && right == null) {  
            System.out.print(this + " ");  
            data = null;  
            return;  
        }  
        // 移走左子树若其存在  
        if (left != null) {  
            left.defoliate();  
            left = null;  
        }  
        // 移走本节点,放在中间表示中跟移走...  
        // innerNode += this + " ";  
        data = null;  
        // 移走右子树若其存在  
        if (right != null) {  
            right.defoliate();  
            right = null;  
        }  
    }  
    /** 
 
 * @param args 
 
 */  
    public static void main(String[] args) {  
        // TODO Auto-generated method stub  
        BinTree e = new BinTree("E");  
        BinTree g = new BinTree("G");  
        BinTree h = new BinTree("H");  
        BinTree i = new BinTree("I");  
        BinTree d = new BinTree("D", null, g);  
        BinTree f = new BinTree("F", h, i);  
        BinTree b = new BinTree("B", d, e);  
        BinTree c = new BinTree("C", f, null);  
        BinTree tree = new BinTree("A", b, c);  
        System.out.println("前序遍历二叉树结果: ");  
        tree.preOrder(tree);  
        System.out.println();  
        System.out.println("中序遍历二叉树结果: ");  
        tree.inOrder(tree);  
        System.out.println();  
        System.out.println("后序遍历二叉树结果: ");  
        tree.postOrder(tree);  
        System.out.println();  
        System.out.println("层次遍历二叉树结果: ");  
        tree.LayerOrder(tree);  
        System.out.println();  
        System.out.println("F所在的层次: " + tree.level("F"));  
        System.out.println("这棵二叉树的高度: " + tree.height());  
        System.out.println("--------------------------------------");  
        tree.reflect();  
        System.out.println("交换每个节点的孩子节点后......");  
        System.out.println("前序遍历二叉树结果: ");  
        tree.preOrder(tree);  
        System.out.println();  
        System.out.println("中序遍历二叉树结果: ");  
        tree.inOrder(tree);  
        System.out.println();  
        System.out.println("后序遍历二叉树结果: ");  
        tree.postOrder(tree);  
        System.out.println();  
        System.out.println("层次遍历二叉树结果: ");  
        tree.LayerOrder(tree);  
        System.out.println();  
        System.out.println("F所在的层次: " + tree.level("F"));  
        System.out.println("这棵二叉树的高度: " + tree.height());  
    }  
}  

经典算法的Java实现

(1)河内塔问题:

说明:

河内之塔(Towers of Hanoi)是法国人M.Claus(Lucas)于1883年从泰国带至法国的,河内为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及这个故事,据说创世纪时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),并命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将毁损,而也就是世界末日来临之时。

解法:

如果柱子标为ABC,要由A搬至C,在只有一个盘子时,就将它直接搬至C,当有两个盘子,就将B当作辅助柱。

如图所示:

事实上,若有n个盘子,则移动完毕所需之次数为2^n - 1,所以当盘数为64时,则所需次数为:264- 1 = 18446744073709551615 为5.05390248594782e+16年,也就是约5000世纪,如果对这数字没什么概念,就假设每秒钟搬一个盘子好了,也要约5850亿年左右。

实现:

//Java程序的实现  
import java.io.*;  
public class Hanoi {  
    public static void main(String args[]) throws IOException {  
        int n;  
        BufferedReader buf;  
        buf = new BufferedReader(new InputStreamReader(System. in ));  
        System.out.print("请输入盘数:");  
        n = Integer.parseInt(buf.readLine());  
        Hanoi hanoi = new Hanoi();  
        hanoi.move(n, 'A', 'B', 'C');  
    }  
    public void move(int n, char a, char b, char c) {  
        if (n == 1) System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);  
        else {  
            move(n - 1, a, c, b);  
            System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);  
            move(n - 1, b, a, c);  
        }  
    }  
}  

(2)费式数列

说明:

Fibonacci为1200年代的欧洲数学家,在他的著作中曾经提到:“若有一只免子每个月生一只小免子,一个月后小免子也开始生产。起初只有一只免子,一个月后就有两只免子,二个月后有三只免子,三个月后有五只免子(小免子投入生产)…”。

如果不太理解这个例子的话,举个图就知道了,注意新生的小免子需一个月成长期才会投入生产,类似的道理也可以用于植物的生长,这就是Fibonacci数列,一般习惯称之为费氏数列,例如以下:

1、1 、2、3、5、8、13、21、34、55、89…

解法:

依说明,我们可以将费氏数列定义为以下:

fn = fn-1 + fn-2   if n > 2

fn = 1       if n = 0, 1

实现:

//Java程序的实现:  
public class Fibonacci {  
    public static void main(String[] args) {  
        int[] fib = new int[20];  
        fib[0] = 0;  
        fib[1] = 1;  
        for (int i = 2; i < fib.length; i++) fib[i] = fib[i - 1] + fib[i - 2];  
        for (int i = 0; i < fib.length; i++) System.out.print(fib[i] + " ");  
        System.out.println();  
    }  
}  

(3)巴斯卡(Pascal)三角形

说明:

巴斯卡(Pascal)三角形基本上就是在解 nCr ,因为三角形上的每一个数字各对应一个nCr,其中 n 为 row,而 r 为 column,如下:

0C0

1C0 1C1

2C0 2C1 2C2

3C0 3C1 3C2 3C3

4C0 4C1 4C2 4C3 4C4

对应的数据如下图所示:

解法:

巴斯卡三角形中的 nCr 可以使用以下这个公式来计算,以避免阶乘运算时的数值溢位:

nCr = [(n-r+1)*nCr-1]/r

nC0 = 1

实现:

//java实现  
import java.awt.*;  
import javax.swing.*;  
public class Pascal extends JFrame {  
    public Pascal() {  
        setBackground(Color.white);  
        setTitle("巴斯卡三角形");  
        setSize(520, 350);  
        setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);  
        setSize(700, 700);  
        setVisible(true);  
    }  
    private long combi(int n, int r) {  
        int i;  
        long p = 1;  
        for (i = 1; i <= r; i++) p = p * (n - i + 1) / i;  
        return p;  
    }  
    public void paint(Graphics g) {  
        g.setColor(Color.white);  
        g.clearRect(0, 0, getSize().width, getSize().height);  
        g.setColor(Color.red);  
        final int N = 12;  
        int n, r, t;  
        for (n = 0; n <= N; n++) {  
            for (r = 0; r <= n; r++) g.drawString(" " + combi(n, r), (N - n) * 20 + r * 40, n * 20 + 50);  
        }  
    }  
    public static void main(String args[]) {  
        Pascal frm = new Pascal();  
    }  
}  

(4)蒙地卡罗法求 PI

说明:

蒙地卡罗为摩洛哥王国之首都,该国位于法国与义大利国境,以赌博闻名。蒙地卡罗的基本原理为以乱数配合面积公式来进行解题,这种以机率来解题的方式带有赌博的意味,虽然在精确度上有所疑虑,但其解题的思考方向却是个值得学习的方式。

解法:

蒙地卡罗的解法适用于与面积有关的题目,例如求PI值或椭圆面积,这边介绍如何求PI值;假设有一个圆半径为1,所以四分之一圆面积就为PI,而包括此四分之一圆的正方形面积就为1,如下图所示:

如果随意的在正方形中投射飞标(点)好了,则这些飞标(点)有些会落于四分之一圆内,假设所投射的飞标(点)有n点,在圆内的飞标(点)有c点,则依比例来算,就会得到上图中最后的公式。

至于如何判断所产生的点落于圆内,很简单,令乱数产生X与Y两个数值,如果X2+Y2等于1就是落在圆内。

实现:

//java程序实现  
public class PI {  
    public static void main(String[] args) {  
        final int N = 50000;  
        int sum = 0;  
        for (int i = 1; i < N; i++) {  
            double x = Math.random();  
            double y = Math.random();  
            if ((x * x + y * y) < 1) sum++;  
        }  
        System.out.println("PI = " + (double) 4 * sum / N);  
    }  
}  

(5)最大公因数、最小公倍数

说明:

解法:

最大公因数使用辗转相除法来求,最小公倍数则由这个公式来求:

GCD * LCM = 两数乘积

实现:

//java程序实现  
import java.io.*;  
public class GcdLcm {  
    public static int gcdOf(int m, int n) {  
        int r;  
        while (n != 0) {  
            r = m % n;  
            m = n;  
            n = r;  
        }  
        return m;  
    }  
    public static int lcmOf(int m, int n) {  
        return m * n / gcdOf(m, n);  
    }  
    public static void main(String[] args) throws IOException {  
        BufferedReader ln = new BufferedReader(new InputStreamReader(System. in ));  
        System.out.print("请输入第一个数:");  
        int x = Integer.parseInt(ln.readLine());  
        System.out.print("请输入第二个数:");  
        int y = Integer.parseInt(ln.readLine());  
        System.out.println("GCD of (" + x + "," + y + ")=" + GcdLcm.gcdOf(x, y));  
        System.out.println("LCM of (" + x + "," + y + ")=" + GcdLcm.lcmOf(x, y));  
    }  
}  

(6)阿姆斯壮数

说明:

在三位的整数中,例如153可以满足13 + 53 + 33 = 153,这样的数称之为Armstrong数,试写出一程式找出所有的三位数Armstrong数。

解法:

Armstrong数的寻找,其实就是在问如何将一个数字分解为个位数、十位数、百位数…,这只要使用除法与余数运算就可以了,例如输入 input为abc,则:

a = input / 100

b = (input%100) / 10

c = input % 10

实现:

//java程序实现  
public class Armstrong {  
    public static void main(String[] args) {  
        System.out.println("寻找Armstrong数:");  
        for (int i = 100; i <= 999; i++) {  
            int a = i / 100;  
            int b = (i % 100) / 10;  
            int c = i % 10;  
            if (a * a * a + b * b * b + c * c * c == i) System.out.print(i + " ");  
        }  
        System.out.println();  
    }  
}  

(7)最大访客数

说明:

现将举行一个餐会,让访客事先填写到达时间与离开时间,为了掌握座位的数目,必须先估计不同时间的最大访客数。

解法:

这个题目看似有些复杂,其实相当简单,单就计算访客数这个目的,同时考虑同一访客的来访时间与离开时间,反而会使程式变得复杂;只要将来访时间与离开时间分开处理就可以了,假设访客 i 的来访时间为x[i],而离开时间为y[i]。

在资料输入完毕之后,将x[i]与y[i]分别进行排序(由小到大),道理很简单,只要先计算某时之前总共来访了多少访客,然后再减去某时之前的离开访客,就可以轻易的解出这个问题

实现:

//java实现  
import java.io.*;  
import java.util.*;  
public class MaxVisit {  
    public static int maxGuest(int[] x, int[] y, int time) {  
        int num = 0;  
        for (int i = 0; i < x.length; i++) {  
            if (time > x[i]) num++;  
            if (time > y[i]) num--;  
        }  
        return num;  
    }  
    public static void main(String[] args) throws IOException {  
        BufferedReader buf = new BufferedReader(new InputStreamReader(System. in ));  
        System.out.println("输入来访时间与离开时间(0~24):");  
        System.out.println("范例:10 15");  
        System.out.println("输入-1结束");  
        java.util.ArrayList list = new ArrayList();  
        while (true) {  
            System.out.print(">>");  
            String input = buf.readLine();  
            if (input.equals("-1")) break;  
            list.add(input);  
        }  
        int[] x = new int[list.size()];  
        int[] y = new int[list.size()];  
        for (int i = 0; i < x.length; i++) {  
            String input = (String) list.get(i);  
            String[] strs = input.split(" ");  
            x[i] = Integer.parseInt(strs[0]);  
            y[i] = Integer.parseInt(strs[1]);  
        }  
        Arrays.sort(x);  
        Arrays.sort(y);  
        for (int time = 0; time < 25; time++) {  
            System.out.println(time + " 时的最大访客数:" + MaxVisit.maxGuest(x, y, time));  
        }  
    }  
}  

(8)洗扑克牌(乱数排列)

说明:

洗扑克牌的原理其实与乱数排列是相同的,都是将一组数字(例如1~N)打乱重新排列,只不过洗扑克牌多了一个花色判断的动作而已。

解法:

初学者通常会直接想到,随机产生1~N的乱数并将之存入阵列中,后来产生的乱数存入阵列前必须先检查阵列中是否已有重复的数字,如果有这个数就不存入,再重新产生下一个数,运气不好的话,重复的次数就会很多,程式的执行速度就很慢了,这不是一个好方法。

以1~52的乱数排列为例好了,可以将阵列先依序由1到52填入,然后使用一个回圈走访阵列,并随机产生1~52的乱数,将产生的乱数当作索引取出阵列值,并与目前阵列走访到的值相交换,如此就不用担心乱数重复的问题了,阵列走访完毕后,所有的数字也就重新排列了。

至于如何判断花色?这只是除法的问题而已,取商数判断花色,取余数判断数字,您可以直接看程式比较清楚。

实现:

//java实现  
public class ShuffleCard {  
    public static void main(String args[]) {  
        final int N = 52;  
        int[] poker = new int[N + 1];  
        // 初始化阵列  
        for (int i = 1; i <= N; i++) poker[i] = i;  
        // 洗牌  
        for (int i = 1; i <= N; i++) {  
            int j = (int)(Math.random() * N);  
            if (j == 0) j = 1;  
            int tmp = poker[i];  
            poker[i] = poker[j];  
            poker[j] = tmp;  
        }  
        for (int i = 1; i <= N; i++) {  
            // 判断花色  
            switch ((poker[i] - 1) / 13) {  
                case 0:  
                    System.out.print("桃");  
                    break;  
                case 1:  
                    System.out.print("心");  
                    break;  
                case 2:  
                    System.out.print("砖");  
                    break;  
                case 3:  
                    System.out.print("梅");  
                    break;  
            }  
            // 扑克牌数字  
            int remain = poker[i] % 13;  
            switch (remain) {  
                case 0:  
                    System.out.print("K ");  
                    break;  
                case 12:  
                    System.out.print("Q ");  
                    break;  
                case 11:  
                    System.out.print("J ");  
                    break;  
                default:  
                    System.out.print(remain + " ");  
                    break;  
            }  
            if (i % 13 == 0) System.out.println("");  
        }  
    }  
}  

(9)约瑟夫问题(Josephus Problem)

说明:

据说着名犹太历史学家 Josephus有过以下的故事:在罗马人占领乔塔帕特后,39 个犹太人与Josephus及他的朋友躲到一个洞中,39个犹太人决定宁愿死也不要被敌人到,于是决定了一个自杀方式,41个人排成一个圆圈,由第1个人 开始报数,每报数到第3人该人就必须自杀,然后再由下一个重新报数,直到所有人都自杀身亡为止。

然而Josephus 和他的朋友并不想遵从,Josephus要他的朋友先假装遵从,他将朋友与自己安排在第16个与第31个位置,于是逃过了这场死亡游戏。

解法:

约瑟夫问题可用代数分析来求解,将这个问题扩大好了,假设现在您与m个朋友不幸参与了这个游戏,您要如何保护您与您的朋友?只要画两个圆圈就可以让自己与朋友免于死亡游戏,这两个圆圈内圈是排列顺序,而外圈是自杀顺序,如下图所示:

使用程式来求解的话,只要将阵列当作环状来处理就可以了,在阵列中由计数1开始,每找到三个无资料区就填入一个计数,直而计数达41为止,然后将阵列由索引1开始列出,就可以得知每个位置的自杀顺序,这就是约瑟夫排列,41个人而报数3的约琴夫排列如下所示:

14 36 1 38 15 2 24 30 3 16 34 4 25 17 5 40 31 6 18 26 7 37 19 8 35 27 9 20 32 10 41 21 11 28 39 12 22 33 13 29 23

由上可知,最后一个自杀的是在第31个位置,而倒数第二个自杀的要排在第16个位置,之前的人都死光了,所以他们也就不知道约琴夫与他的朋友并没有遵守游戏规则了。

实现:

//java实现  
public class Josephus {  
    public static int[] arrayOfJosephus(int number, int per) {  
        int[] man = new int[number];  
        for (int count = 1, i = 0, pos = -1; count <= number; count++) {  
            do {  
                pos = (pos + 1) % number; // 环状处理  
                if (man[pos] == 0) i++;  
                if (i == per) { // 报数为3了  
                    i = 0;  
                    break;  
                }  
            } while (true);  
            man[pos] = count;  
        }  
        return man;  
    }  
    public static void main(String[] args) {  
        int[] man = Josephus.arrayOfJosephus(41, 3);  
        int alive = 3;  
        System.out.println("约琴夫排列:");  
        for (int i = 0; i < 41; i++) System.out.print(man[i] + " ");  
        System.out.println("\nL表示3个存活的人要放的位置:");  
        for (int i = 0; i < 41; i++) {  
            if (man[i] > (41 - alive)) System.out.print("L");  
            else System.out.print("D");  
            if ((i + 1) % 5 == 0) System.out.print("  ");  
        }  
        System.out.println();  
    }  
}  

(10)排列组合

说明:

将一组数字、字母或符号进行排列,以得到不同的组合顺序,例如1 2 3这三个数的排列组合有:1 2 3、1 3 2、2 1 3、2 3 1、3 1 2、3 2 1。

解法:

可以使用递回将问题切割为较小的单元进行排列组合,例如1 2 3 4的排列可以分为1 [2 3 4]、2 [1 3 4]、3 [1 2 4]、4 [1 2 3]进行排列,这边利用旋转法,先将旋转间隔设为0,将最右边的数字旋转至最左边,并逐步增加旋转的间隔,例如:

1 2 3 4 -> 旋转1 -> 继续将右边2 3 4进行递回处理

2 1 3 4 -> 旋转1 2 变为 2 1-> 继续将右边1 3 4进行递回处理

3 1 2 4 -> 旋转1 2 3变为 3 1 2 -> 继续将右边1 2 4进行递回处理

4 1 2 3 -> 旋转1 2 3 4变为4 1 2 3 -> 继续将右边1 2 3进行递回处理

实现:

//java实现  
public class Permutation {  
    public static void perm(int[] num, int i) {  
        if (i < num.length - 1) {  
            for (int j = i; j <= num.length - 1; j++) {  
                int tmp = num[j];  
                // 旋转该区段最右边数字至最左边  
                for (int k = j; k > i; k--) num[k] = num[k - 1];  
                num[i] = tmp;  
                perm(num, i + 1);  
                // 还原  
                for (int k = i; k < j; k++) num[k] = num[k + 1];  
                num[j] = tmp;  
            }  
        } else {  
            // 显示此次排列  
            for (int j = 1; j <= num.length - 1; j++) System.out.print(num[j] + " ");  
            System.out.println();  
        }  
    }  
    public static void main(String[] args) {  
        int[] num = new int[4 + 1];  
        for (int i = 1; i <= num.length - 1; i++) num[i] = i;  
        perm(num, 1);  
    }  
}  

(11)得分排行

说明:

假设有一教师依学生座号输入考试分数,现希望在输入完毕后自动显示学生分数的排行,当然学生的分数可能相同。

解法:

这个问题基本上要解不难,只要使用额外的一个排行阵列走访分数阵列就可以了,直接使用下面的程式片段作说明:

for(i = 0; i < count; i++) {

    juni[i] = 1;

    for(j = 0; j < count; j++) {

        if(score[j] > score[i])

            juni[i]++;

   }

}

printf("得分\t排行\n");

for(i = 0; i < count; i++)

    printf("%d\t%d\n", score[i], juni[i]);

上面这个方法虽然简单,但是反覆计算的次数是n^2,如果n值变大,那么运算的时间就会拖长;改变juni阵列的长度为n+2,并将初始值设定为0,如下所示:

接下来走访分数阵列,并在分数所对应的排行阵列索引元素上加1,如下所示:

将排行阵列最右边的元素设定为1,然后依序将右边的元素值加至左边一个元素,最后排行阵列中的「分数+1」」就是得该分数的排行,如下所示:

这样的方式看起来复杂,其实不过在计算某分数之前排行的人数,假设89分之前的排行人数为x人,则89分自然就是x+1了,这也是为什么排行阵列最右边要设定为1的原因;如果89分有y人,则88分自然就是x+y+1,整个阵列右边元素向左加的原因正是如此。

如果分数有负分的情况,由于C/C++或Java等程式语言无法处理负的索引,所以必须加上一个偏移值,将所有的分数先往右偏移一个范围即可,最后显示的时候记得减回偏移值就可以了。

实现:

//  
import java.io.*;  
public class ScoreRank {  
    public static void main(String[] args)  
    throws NumberFormatException, IOException {  
        final int MAX = 100;  
        final int MIN = 0;  
        int[] score = new int[MAX + 1];  
        int[] juni = new int[MAX + 2];  
        BufferedReader reader = new BufferedReader(new InputStreamReader(System. in ));  
        int count = 0;  
        do {  
            System.out.print("输入分数,-1结束:");  
            score[count++] = Integer.parseInt(reader.readLine());  
        } while ((score[count - 1] != -1));  
        count--;  
        for (int i = 0; i < count; i++) juni[score[i]]++;  
        juni[MAX + 1] = 1;  
        for (int i = MAX; i >= MIN; i--) juni[i] = juni[i] + juni[i + 1];  
        System.out.println("得分\t排行");  
        for (int i = 0; i < count; i++) {  
            System.out.println(score[i] + "\t" + juni[score[i] + 1]);  
        }  
    }  
}  

(12)选择、插入、气泡排序

说明:

选择排序(Selection sort)、插入排序(Insertion sort)与气泡排序(Bubble sort)这三个排序方式是初学排序所必须知道的三个基本排序方式,它们由于速度不快而不实用(平均与最快的时间复杂度都是O(n2)),然而它们排序的方式确是值得观察与探讨的。

解法:

① 选择排序

将要排序的对象分作两部份,一个是已排序的,一个是未排序的,从后端未排序部份选择一个最小值,并放入前端已排序部份的最后一个,例如:

排序前:70 80 31 37 10 1 48 60 33 80

[1] 80 31 37 10 70 48 60 33 80 选出最小值1

[1 10] 31 37 80 70 48 60 33 80 选出最小值10

[1 10 31] 37 80 70 48 60 33 80 选出最小值31

[1 10 31 33] 80 70 48 60 37 80 …

[1 10 31 33 37] 70 48 60 80 80 …

[1 10 31 33 37 48] 70 60 80 80 …

[1 10 31 33 37 48 60] 70 80 80 …

[1 10 31 33 37 48 60 70] 80 80 …

[1 10 31 33 37 48 60 70 80] 80 …

② 插入排序

像是玩朴克一样,我们将牌分作两堆,每次从后面一堆的牌抽出最前端的牌,然后插入前面一堆牌的适当位置,例如:

排序前:92 77 67 8 6 84 55 85 43 67

[77 92] 67 8 6 84 55 85 43 67 将77插入92前

[67 77 92] 8 6 84 55 85 43 67 将67插入77前

[8 67 77 92] 6 84 55 85 43 67 将8插入67前

[6 8 67 77 92] 84 55 85 43 67 将6插入8前

[6 8 67 77 84 92] 55 85 43 67 将84插入92前

[6 8 55 67 77 84 92] 85 43 67 将55插入67前

[6 8 55 67 77 84 85 92] 43 67 …

[6 8 43 55 67 77 84 85 92] 67 …

[6 8 43 55 67 67 77 84 85 92] …

③ 气泡排序法

顾名思义,就是排序时,最大的元素会如同气泡一样移至右端,其利用比较相邻元素的方法,将大的元素交换至右端,所以大的元素会不断的往右移动,直到适当的位置为止。

基本的气泡排序法可以利用旗标的方式稍微减少一些比较的时间,当寻访完阵列后都没有发生任何的交换动作,表示排序已经完成,而无需再进行之后的回圈比较与交换动作,例如:

排序前:95 27 90 49 80 58 6 9 18 50

27 90 49 80 58 6 9 18 50 [95] 95浮出

27 49 80 58 6 9 18 50 [90 95] 90浮出

27 49 58 6 9 18 50 [80 90 95] 80浮出

27 49 6 9 18 50 [58 80 90 95] …

27 6 9 18 49 [50 58 80 90 95] …

6 9 18 27 [49 50 58 80 90 95] …

6 9 18 [27 49 50 58 80 90 95] 由于接下来不会再发生交换动作,排序提早结束

在上面的例子当中,还加入了一个观念,就是当进行至i与i+1时没有交换的动作,表示接下来的i+2至n已经排序完毕,这也增进了气泡排序的效率。

实现:

//Java程序实现  
public class BasicSort {  
    public static void selectionSort(int[] number) {  
        for (int i = 0; i < number.length - 1; i++) {》》  
            int m = i;  
            for (int j = i + 1; j < number.length; j++)  
                if (number[j] < number[m]) m = j; === = if (i != m) swap(number, i, m);  
        }  
    }  
    public static void injectionSort(int[] number) {  
        for (int j = 1; j < number.length; j++) {  
            int tmp = number[j];  
            int i = j - 1;  
            while (tmp < number[i]) {  
                number[i + 1] = number[i];  
                i--;  
                if (i == -1) break;  
            }  
            number[i + 1] = tmp;  
        }  
    }  
    public static void bubbleSort(int[] number) {  
        boolean flag = true;  
        for (int i = 0; i < number.length - 1 && flag; i++) {  
            flag = false;  
            for (int j = 0; j < number.length - i - 1; j++) {  
                if (number[j + 1] < number[j]) {  
                    swap(number, j + 1, j);  
                    flag = true;  
                }  
            }  
        }  
    }  
    private static void swap(int[] number, int i, int j) {  
        int t;  
        t = number[i];  
        number[i] = number[j];  
        number[j] = t;  
    }  
    public static void main(String[] args) {  
        //测试:  
        int[] a = {  
            10, 9, 1, 100, 20, 200, 39, 45, 23, 18, 2, 2, 15  
        };  
        //测试选择排序:  
        System.out.println("选择排序前:");  
        for (int x: a) System.out.print(x + " ");  
        System.out.println();  
        int[] b = new int[a.length];  
        b = a;  
        selectionSort(b);  
        System.out.println("选择排序后:");  
        for (int x: b) System.out.print(x + " ");  
        System.out.println();  
        //测试插入排序:  
        System.out.println("插入排序前:");  
        for (int x: a) System.out.print(x + " ");  
        System.out.println();  
        int[] c = new int[a.length];  
        c = a;  
        injectionSort(c);  
        System.out.println("插入排序后:");  
        for (int x: c) System.out.print(x + " ");  
        System.out.println();  
        //测试气泡排序:  
        System.out.println("气泡排序前:");  
        for (int x: a) System.out.print(x + " ");  
        System.out.println();  
        int[] d = new int[a.length];  
        d = a;  
        bubbleSort(d);  
        System.out.println("气泡排序后:");  
        for (int x: d) System.out.print(x + " ");  
    }  
}  

(13)快速排序(一)

说明:

快速排序法(quick sort)是目前所公认最快的排序方法之一(视解题的对象而定),虽然快速排序法在最差状况下可以达O(n2),但是在多数的情况下,快速排序法的效率表现是相当不错的。

快速排序法的基本精神是在数列中找出适当的轴心,然后将数列一分为二,分别对左边与右边数列进行排序,而影响快速排序法效率的正是轴心的选择。

这边所介绍的第一个快速排序法版本,是在多数的教科书上所提及的版本,因为它最容易理解,也最符合轴心分割与左右进行排序的概念,适合对初学者进行讲解。

解法:

这边所介绍的快速演算如下:将最左边的数设定为轴,并记录其值为 s

廻圈处理:

令索引 i 从数列左方往右方找,直到找到大于 s 的数

令索引 j 从数列左右方往左方找,直到找到小于 s 的数

如果 i >= j,则离开回圈

如果 i < j,则交换索引i与j两处的值

将左侧的轴与 j 进行交换

对轴左边进行递回

对轴右边进行递回

透过以下演算法,则轴左边的值都会小于s,轴右边的值都会大于s,如此再对轴左右两边进行递回,就可以对完成排序的目的,例如下面的实例,*表示要交换的数,[]表示轴:

[41] 24 76* 11 45 64 21 69 19 36*

[41] 24 36 11 45* 64 21 69 19* 76

[41] 24 36 11 19 64* 21* 69 45 76

[41] 24 36 11 19 21 64 69 45 76

21 24 36 11 19 [41] 64 69 45 76

在上面的例子中,41左边的值都比它小,而右边的值都比它大,如此左右再进行递回至排序完成。

实现:

//java实现  
public class QuickSort {  
    public static void sort(int[] number) {  
        sort(number, 0, number.length - 1);  
    }  
    private static void sort(int[] number, int left, int right) {  
        if (left < right) {  
            int s = number[left];  
            int i = left;  
            int j = right + 1;  
            while (true) {  
                // 向右找  
                while (i + 1 < number.length && number[++i] < s);  
                // 向左找  
                while (j - 1 > -1 && number[--j] > s);  
                if (i >= j) break;  
                swap(number, i, j);  
            }  
            number[left] = number[j];  
            number[j] = s;  
            sort(number, left, j - 1);  
            // 对左边进行递回  
            sort(number, j + 1, right);  
            // 对右边进行递回  
        }  
    }  
    private static void swap(int[] number, int i, int j) {  
        int t;  
        t = number[i];  
        number[i] = number[j];  
        number[j] = t;  
    }  
}  

(14)快速排序(二)

说明:

在快速排序法(一)中,每次将最左边的元素设为轴,而之前曾经说过,快速排序法的加速在于轴的选择,在这个例子中,只将轴设定为中间的元素,依这个元素作基准进行比较,这可以增加快速排序法的效率。

解法:

在这个例子中,取中间的元素s作比较,同样的先得右找比s大的索引 i,然后找比s小的索引 j,只要两边的索引还没有交会,就交换 i 与 j 的元素值,这次不用再进行轴的交换了,因为在寻找交换的过程中,轴位置的元素也会参与交换的动作,例如:

41 24 76 11 45 64 21 69 19 36

首先left为0,right为9,(left+right)/2 = 4(取整数的商),所以轴为索引4的位置,比较的元素是45,您往右找比45大的,往左找比45小的进行交换:

41 24 76* 11 [45] 64 21 69 19 *36

41 24 36 11 45* 64 21 69 19* 76

41 24 36 11 19 64* 21* 69 45 76

[41 24 36 11 19 21] [64 69 45 76]

完成以上之后,再初别对左边括号与右边括号的部份进行递回,如此就可以完成排序的目的。

实现:

public class QuickSort {  
    public static void sort(int[] number) {  
        sort(number, 0, number.length - 1);  
    }  
    private static void sort(int[] number, int left, int right) {  
        if (left < right) {  
            int s = number[(left + right) / 2];  
            int i = left - 1;  
            int j = right + 1;  
            while (true) {  
                // 向右找  
                while (number[++i] < s);  
                // 向左找  
                while (number[--j] > s);  
                if (i >= j) break;  
                swap(number, i, j);  
            }  
            sort(number, left, i - 1);  
            // 对左边进行递回  
            sort(number, j + 1, right);  
            // 对右边进行递回  
        }  
    }  
    private static void swap(int[] number, int i, int j) {  
        int t;  
        t = number[i];  
        number[i] = number[j];  
        number[j] = t;  
    }  
}  

(15)快速排序(三)

说明:

之前说过轴的选择是快速排序法的效率关键之一,在这边的快速排序法的轴选择方式更加快了快速排序法的效率,它是来自演算法名书 Introduction to Algorithms 之中。

解法:

先说明这个快速排序法的概念,它以最右边的值s作比较的标准,将整个数列分为三个部份,一个是小于s的部份,一个是大于s的部份,一个是未处理的部份,如下所示 :

在排序的过程中,i 与 j 都会不断的往右进行比较与交换,最后数列会变为以下的状态:

然后将s的值置于中间,接下来就以相同的步骤会左右两边的数列进行排序的动作,如下所示:

整个演算的过程,直接摘录书中的虚拟码来作说明:

实现:

public class QuickSort3 {  
    public static void sort(int[] number) {  
        sort(number, 0, number.length - 1);  
    }  
    private static void sort(int[] number, int left, int right) {  
        if (left < right) {  
            int q = partition(number, left, right);  
            sort(number, left, q - 1);  
            sort(number, q + 1, right);  
        }  
    }  
    private static int partition(int number[], int left, int right) {  
        int s = number[right];  
        int i = left - 1;  
        for (int j = left; j < right; j++) {  
            if (number[j] <= s) {  
                i++;  
                swap(number, i, j);  
            }  
        }  
        swap(number, i + 1, right);  
        return i + 1;  
    }  
    private static void swap(int[] number, int i, int j) {  
        int t;  
        t = number[i];  
        number[i] = number[j];  
        number[j] = t;  
    }  
}  

(16)合并排序

说明:

之前所介绍的排序法都是在同一个阵列中的排序,考虑今日有两笔或两笔以上的资料,它可能是不同阵列中的资料,或是不同档案中的资料,如何为它们进行排序?

解法:

可以使用合并排序法,合并排序法基本是将两笔已排序的资料合并并进行排序,如果所读入的资料尚未排序,可以先利用其它的排序方式来处理这两笔资料,然后再将排序好的这两笔资料合并。

有人问道,如果两笔资料本身就无排序顺序,何不将所有的资料读入,再一次进行排序?排序的精神是尽量利用资料已排序的部份,来加快排序的效率,小笔资料的排序较为快速,如果小笔资料排序完成之后,再合并处理时,因为两笔资料都有排序了,所有在合并排序时会比单纯读入所有的资料再一次排序来的有效率。

那么可不可以直接使用合并排序法本身来处理整个排序的动作?而不动用到其它的排序方式?答案是肯定的,只要将所有的数字不断的分为两个等分,直到最后剩一个数字为止,然后再反过来不断的合并,就如下图所示:

不过基本上分割又会花去额外的时间,不如使用其它较好的排序法来排序小笔资料,再使用合并排序来的有效率。

实现:

public class MergeSort {  
    public static int[] sort(int[] number1, int[] number2) {  
        int[] number3 = new int[number1.length + number2.length];  
        int i = 0, j = 0, k = 0;  
        while (i < number1.length && j < number2.length) {  
            if (number1[i] <= number2[j]) number3[k++] = number1[i++];  
            else number3[k++] = number2[j++];  
        }  
        while (i < number1.length) number3[k++] = number1[i++];  
        while (j < number2.length) number3[k++] = number2[j++];  
        return number3;  
    }  
}  

(17)基数排序

说明:

在之前所介绍过的排序方法,都是属于「比较性」的排序法,也就是每次排序时 ,都是比较整个键值的大小以进行排序。

这边所要介绍的「基数排序法」(radix sort)则是属于「分配式排序」(distribution sort),基数排序法又称「桶子法」(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些「桶」中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog®m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的比较性排序法。

解法:

基数排序的方式可以采用LSD(Least sgnificant digital)或MSD(Most sgnificant digital),LSD的排序方式由键值的最右边开始,而MSD则相反,由键值的最左边开始。

以LSD为例,假设原来有一串数值如下所示:

73, 22, 93, 43, 55, 14, 28, 65, 39, 81

首先根据个位数的数值,在走访数值时将它们分配至编号0到9的桶子中:

0

1

2

3

4

5

6

7

8

9

81

65

39

43

14

55

28

93

22

73

接下来将这些桶子中的数值重新串接起来,成为以下的数列:

81, 22, 73, 93, 43, 14, 55, 65, 28, 39

接着再进行一次分配,这次是根据十位数来分配:

0

1

2

3

4

5

6

7

8

9

28

39

14

22

43

55

65

73

81

93

接下来将这些桶子中的数值重新串接起来,成为以下的数列:

14, 22, 28, 39, 43, 55, 65, 73, 81, 93

这时候整个数列已经排序完毕;如果排序的对象有三位数以上,则持续进行以上的动作直至最高位数为止。

LSD的基数排序适用于位数小的数列,如果位数多的话,使用MSD的效率会比较好,MSD的方式恰与LSD相反,是由高位数为基底开始进行分配,其他的演 算方式则都相同。

实现:

public class RadixSort {  
    public static void sort(int[] number, int d) {  
        int k = 0;  
        int n = 1;  
        int[][] temp = new int[number.length][number.length];  
        int[] order = new int[number.length];  
        while (n <= d) {  
            for (int i = 0; i < number.length; i++) {  
                int lsd = ((number[i] / n) % 10);  
                temp[lsd][order[lsd]] = number[i];  
                order[lsd]++;  
            }  
            for (int i = 0; i < number.length; i++) {  
                if (order[i] != 0)  
                    for (int j = 0; j < order[i]; j++) {  
                        number[k] = temp[i][j];  
                        k++;  
                    }  
                order[i] = 0;  
            }  
            n *= 10;  
            k = 0;  
        }  
    }  
    public static void main(String[] args) {  
        int[] data = {  
            73, 22, 93, 43, 55, 14, 28, 65, 39, 81, 33, 100  
        };  
        RadixSort.sort(data, 100);  
        for (int i = 0; i < data.length; i++) {  
            System.out.print(data[i] + " ");  
        }  
    }  
}  

(18)循序查找法(使用卫兵)

说明:

搜寻的目的,是在「已排序的资料」中寻找指定的资料,而当中循序搜寻是最基本的搜寻法,只要从资料开头寻找到最后,看看是否找到资料即可。

解法:

初学者看到循序搜寻,多数都会使用以下的方式来进行搜寻:
while(i < MAX) {

    if(number[i] == k) {

        printf("找到指定值");

        break;

    }

    i++;

}

这个方法基本上没有错,但是可以加以改善,可以利用设定卫兵的方式,省去if判断式,卫兵通常设定在数列最后或是最前方,假设设定在列前方好了(索引0的 位置),我们从数列后方向前找,如果找到指定的资料时,其索引值不是0,表示在数列走访完之前就找到了,在程式的撰写上,只要使用一个while回圈就可 以了。

实现:

public class LinearSearch {  
    public static int search(int[] number, int des) {  
        int[] tmp = new int[number.length + 1];  
        for (int i = 1; i < tmp.length; i++) {  
            tmp[i] = number[i - 1];  
        }  
        tmp[0] = des;  
        int k = tmp[0];  
        int i = number.length;  
        while (tmp[i] != k) i--;  
        return i - 1;  
    }  
    public static void main(String[] args) {  
        int[] number = {  
            1, 4, 2, 6, 7, 3, 9, 8  
        };  
        QuickSort.sort(number);  
        int find = LinearSearch.search(number, 3);  
        if (find != 0) System.out.println("找到数值于索引" + find);  
        else System.out.println("找不到数值");  
    }  
}  

(19)二分查找法

说明:

如果搜寻的数列已经有排序,应该尽量利用它们已排序的特性,以减少搜寻比对的次数,这是搜寻的基本原则,二分搜寻法是这个基本原则的代表。

解法:

在二分搜寻法中,从数列的中间开始搜寻,如果这个数小于我们所搜寻的数,由于数列已排序,则该数左边的数一定都小于要搜寻的对象,所以无需浪费时间在左边的数;如果搜寻的数大于所搜寻的对象,则右边的数无需再搜寻,直接搜寻左边的数。

所以在二分搜寻法中,将数列不断的分为两个部份,每次从分割的部份中取中间数比对,例如要搜寻92于以下的数列,首先中间数索引为(0+9)/2 = 4(索引由0开始):

[3 24 57 57 67 68 83 90 92 95]

由于67小于92,所以转搜寻右边的数列:

3 24 57 57 67 [68 83 90 92 95]

由于90小于92,再搜寻右边的数列,这次就找到所要的数了:

3 24 57 57 67 68 83 90 [92 95]

实现:

public class BinarySearch {  
    public static int search(int[] number, int des) {  
        int low = 0;  
        int upper = number.length - 1;  
        while (low <= upper) {  
            int mid = (low + upper) / 2;  
            if (number[mid] < des) low = mid + 1;  
            else if (number[mid] > des) upper = mid - 1;  
            else return mid;  
        }  
        return -1;  
    }  
    public static void main(String[] args) {  
        int[] number = {  
            1, 4, 2, 6, 7, 3, 9, 8  
        };  
        QuickSort.sort(number);  
        int find = BinarySearch.search(number, 3);  
        if (find != -1) System.out.println("找到数值于索引" + find);  
        else System.out.println("找不到数值");  
    }  
}  

(20)插补查找法

说明:

如果却搜寻的资料分布平均的话,可以使用插补(Interpolation)搜寻法来进行搜寻,在搜寻的对象大于500时,插补搜寻法会比 二分搜寻法 来的快速。

解法:

插补搜寻法是以资料分布的近似直线来作比例运算,以求出中间的索引并进行资料比对,如果取出的值小于要寻找的值,则提高下界,如果取出的值大于要寻找的值,则降低下界,如此不断的减少搜寻的范围,所以其本原则与二分搜寻法是相同的,至于中间值的寻找是透过比例运算,如下所示,其中K是指定要寻找的对象, 而m则是可能的索引值:

实现:

public class InterpolationSearch {  
    public static int search(int[] number, int des) {  
        int low = 0;  
        int upper = number.length - 1;  
        while (low <= upper) {  
            int mid = (upper - low) * (des - number[low]) / (number[upper] - number[low]) + low;  
            if (mid < low || mid > upper) return -1;  
            if (des < number[mid]) upper = mid - 1;  
            else if (des > number[mid]) low = mid + 1;  
            else return mid;  
        }  
        return -1;  
    }  
    public static void main(String[] args) {  
        int[] number = {  
            1, 4, 2, 6, 7, 3, 9, 8  
        };  
        QuickSort.sort(number);  
        int find = InterpolationSearch.search(number, 3);  
        if (find != -1) System.out.println("找到数值于索引" + find);  
        else System.out.println("找不到数值");  
    }  
}  

(21)费式查找法

说明:

二分搜寻法每次搜寻时,都会将搜寻区间分为一半,所以其搜寻时间为O(log(2)n),log(2)表示以2为底的log值,这边要介绍的费氏搜寻,其利用费氏数列作为间隔来搜寻下一个数,所以区间收敛的速度更快,搜寻时间为O(logn)。

解法:

费氏搜寻使用费氏数列来决定下一个数的搜寻位置,所以必须先制作费氏数列,这在之前有提过;费氏搜寻会先透过公式计算求出第一个要搜寻数的位置,以及其代表的费氏数,以搜寻对象10个数字来说,第一个费氏数经计算后一定是F5,而第一个要搜寻的位置有两个可能,例如若在下面的数列搜寻的话(为了计算方便, 通常会将索引0订作无限小的数,而数列由索引1开始):

-infin; 1 3 5 7 9 13 15 17 19 20

如果要搜寻5的话,则由索引F5 = 5开始搜寻,接下来如果数列中的数小于指定搜寻值时,就往左找,大于时就向右,每次找的间隔是F4、F3、F2来寻找,当费氏数为0时还没找到,就表示寻找失败,如下所示:

由于第一个搜寻值索引F5 = 5处的值小于19,所以此时必须对齐数列右方,也就是将第一个搜寻值的索引改为F5+2 = 7,然后如同上述的方式进行搜寻,如下所示:

至于第一个搜寻值是如何找到的?我们可以由以下这个公式来求得,其中n为搜寻对象的个数:

Fx + m = n

Fx <= n

也就是说Fx必须找到不大于n的费氏数,以10个搜寻对象来说:

Fx + m = 10

取Fx = 8, m = 2,所以我们可以对照费氏数列得x = 6,然而第一个数的可能位置之一并不是F6,而是第x-1的费氏数,也就是F5 = 5。

如果数列number在索引5处的值小于指定的搜寻值,则第一个搜寻位置就是索引5的位置,如果大于指定的搜寻值,则第一个搜寻位置必须加上m,也就是F5 + m = 5 + 2 = 7,也就是索引7的位置,其实加上m的原因,是为了要让下一个搜寻值刚好是数列的最后一个位置。

费氏搜寻看来难懂,但只要掌握Fx + m = n这个公式,自己找几个实例算一次,很容易就可以理解;费氏搜寻除了收敛快速之外,由于其本身只会使用到加法与减法,在运算上也可以加快。

实现:

public class FibonacciSearch {  
    public static int search(int[] number, int des) {  
        int[] fib = createFibonacci(number.length);  
        int x = findX(fib, number.length + 1, des);  
        int m = number.length - fib[x];  
        x--;  
        int i = x;  
        if (number[i] < des) i += m;  
        while (fib[x] > 0) {  
            if (number[i] < des) i += fib[--x];  
            else if (number[i] > des) i -= fib[--x];  
            else return i;  
        }  
        return -1;  
    }  
    private static int[] createFibonacci(int max) {  
        int[] fib = new int[max];  
        for (int i = 0; i < fib.length; i++) {  
            fib[i] = Integer.MIN_VALUE;  
        }  
        fib[0] = 0;  
        fib[1] = 1;  
        for (int i = 2; i < max; i++) fib[i] = fib[i - 1] + fib[i - 2];  
        return fib;  
    }  
    private static int findX(int[] fib, int n, int des) {  
        int i = 0;  
        while (fib[i] <= n) i++;  
        i--;  
        return i;  
    }  
    public static void main(String[] args) {  
        int[] number = {  
            1, 4, 2, 6, 7, 3, 9, 8  
        };  
        QuickSort.sort(number);  
        int find = FibonacciSearch.search(number, 3);  
        if (find != -1) System.out.println("找到数值于索引" + find);  
        else System.out.println("找不到数值");  
    }  
}  

(22)稀疏矩阵

说明:

如果在矩阵中,多数的元素并没有资料,称此矩阵为稀疏矩阵(sparse matrix),由于矩阵在程式中常使用二维阵列表示,二维阵列的大小与使用的记忆体空间成正比,如果多数的元素没有资料,则会造成记忆体空间的浪费,为 此,必须设计稀疏矩阵的阵列储存方式,利用较少的记忆体空间储存完整的矩阵资讯。

解法:

在这边所介绍的方法较为简单,阵列只储存矩阵的行数、列数与有资料的索引位置及其值,在需要使用矩阵资料时,再透过程式运算加以还原,例如若矩阵资料如下,其中0表示矩阵中该位置没有资料:

0 0 0 0 0 0

0 3 0 0 0 0

0 0 0 6 0 0

0 0 9 0 0 0

0 0 0 0 12 0

这个矩阵是5X6矩阵,非零元素有4个,您要使用的阵列第一列记录其列数、行数与非零元素个数:

5 6 4

阵列的第二列起,记录其位置的列索引、行索引与储存值:

1 1 3

2 3 6

3 2 9

4 4 12

所以原本要用30个元素储存的矩阵资讯,现在只使用了15个元素来储存,节省了不少记忆体的使用。

实现:

public class SparseMatrix {  
    public static int[][] restore(int[][] sparse) {  
        int row = sparse[0][0];  
        int column = sparse[0][1];  
        int[][] array = new int[row][column];  
        int k = 1;  
        for (int i = 0; i < row; i++) {  
            for (int j = 0; j < column; j++) {  
                if (k <= sparse[0][2] && i == sparse[k][0] && j == sparse[k][1]) {  
                    array[i][j] = sparse[k][2];  
                    k++;  
                } else array[i][j] = 0;  
            }  
        }  
        return array;  
    }  
    public static void main(String[] args) {  
        int[][] sparse = {  
            {  
                5, 6, 4  
            }, {  
                1, 1, 3  
            }, {  
                2, 3, 6  
            }, {  
                3, 2, 9  
            }, {  
                4, 4, 12  
            }  
        };  
        int[][] array = SparseMatrix.restore(sparse);  
        for (int i = 0; i < array.length; i++) {  
            for (int j = 0; j < array[i].length; j++) {  
                System.out.print(array[i][j] + " ");  
            }  
            System.out.println();  
        }  
    }  
}  

(23)多维矩阵转一维矩阵

说明:

有的时候,为了运算方便或资料储存的空间问题,使用一维阵列会比二维或多维阵列来得方便,例如上三角矩阵、下三角矩阵或对角矩阵,使用一维阵列会比使用二维阵列来得节省空间。

解法:

以二维阵列转一维阵列为例,索引值由0开始,在由二维阵列转一维阵列时,我们有两种方式:「以列(Row)为主」或「以行(Column)为主」。由于 C/C++、Java等的记忆体配置方式都是以列为主,所以您可能会比较熟悉前者(Fortran的记忆体配置方式是以行为主)。

以列为主的二维阵列要转为一维阵列时,是将二维阵列由上往下一列一列读入一维阵列,此时索引的对应公式如下所示,其中row与column是二维阵列索引,loc表示对应的一维阵列索引:

loc = column + row*行数

以行为主的二维阵列要转为一维阵列时,是将二维阵列由左往右一行一行读入一维阵列,此时索引的对应公式如下所示:

loc = row + column*列数

公式的推导您画图看看就知道了,如果是三维阵列,则公式如下所示,其中i(个数u1)、j(个数u2)、k(个数u3)分别表示三维阵列的三个索引:

以列为主:loc = iu2u3 + j*u3 + k

以行为主:loc = ku1u2 + j*u1 + i

更高维度的可以自行依此类推,但通常更高维度的建议使用其它资料结构(例如物件包装)会比较具体,也不易搞错。

实现:

public class TwoDimArray {  
    public static int[] toOneDimByRow(int[][] array) {  
        int[] arr = new int[array.length * array[0].length];  
        for (int row = 0; row < array.length; row++) {  
            for (int column = 0; column < array[0].length; column++) {  
                int i = column + row * array[0].length;  
                arr[i] = array[row][column];  
            }  
        }  
        return arr;  
    }  
    public static int[] toOneDimByColumn(int[][] array) {  
        int[] arr = new int[array.length * array[0].length];  
        for (int row = 0; row < array.length; row++) {  
            for (int column = 0; column < array[0].length; column++) {  
                int i = i = row + column * array.length;  
                arr[i] = array[row][column];  
            }  
        }  
        return arr;  
    }  
}  

(24)上三角、下三角、对称矩阵

说明:

上三角矩阵是矩阵在对角线以下的元素均为0,即Aij = 0,i > j,例如:

1 2 3 4 5

0 6 7 8 9

0 0 10 11 12

0 0 0 13 14

0 0 0 0 15

下三角矩阵是矩阵在对角线以上的元素均为0,即Aij = 0,i < j,例如:

1 0 0 0 0

2 6 0 0 0

3 7 10 0 0

4 8 11 13 0

5 9 12 14 15

对称矩阵是矩阵元素对称于对角线,例如:

1 2 3 4 5

2 6 7 8 9

3 7 10 11 12

4 8 11 13 14

5 9 12 14 15

上三角或下三角矩阵也有大部份的元素不储存值(为0),我们可以将它们使用一维阵列来储存以节省储存空间,而对称矩阵因为对称于对角线,所以可以视为上三角或下三角矩阵来储存。

解法:

假设矩阵为nxn,为了计算方便,我们让阵列索引由1开始,上三角矩阵化为一维阵列,若以列为主,其公式为:loc = n*(i-1) - i*(i-1)/2 + j

化为以行为主,其公式为:loc = j*(j-1)/2 + i

下三角矩阵化为一维阵列,若以列为主,其公式为:loc = i*(i-1)/2 + j

若以行为主,其公式为:loc = n*(j-1) - j*(j-1)/2 + i

实现:

public class TriangleArray {  
    private int[] arr;  
    private int length;  
    public TriangleArray(int[][] array) {  
        length = array.length;  
        arr = new int[length * (1 + length) / 2];  
        int loc = 0;  
        for (int i = 0; i < length; i++) {  
            for (int j = 0; j < length; j++) {  
                if (array[i][j] != 0) arr[loc++] = array[i][j];  
            }  
        }  
    }  
    public int getValue(int i, int j) {  
        int loc = length * i - i * (i + 1) / 2 + j;  
        return arr[loc];  
    }  
    public static void main(String[] args) {  
        int[][] array = {  
            {  
                1, 2, 3, 4, 5  
            }, {  
                0, 6, 7, 8, 9  
            }, {  
                0, 0, 10, 11, 12  
            }, {  
                0, 0, 0, 13, 14  
            }, {  
                0, 0, 0, 0, 15  
            }  
        };  
        TriangleArray triangleArray = new TriangleArray(array);  
        System.out.print(triangleArray.getValue(2, 2));  
    }  
}  

(25)奇数魔方阵

说明:

将1到n(为奇数)的数字排列在nxn的方阵上,且各行、各列与各对角线的和必须相同,如下所示:

解法:

填魔术方阵的方法以奇数最为简单,第一个数字放在第一行第一列的正中央,然后向右(左)上填,如果右(左)上已有数字,则向下填,如下图所示:

一般程式语言的阵列索引多由0开始,为了计算方便,我们利用索引1到n的部份,而在计算是向右(左)上或向下时,我们可以将索引值除以n值,如果得到余数为1就向下,否则就往右(左)上,原理很简单,看看是不是已经在同一列上绕一圈就对了。

实现:

public class Matrix {  
    public static int[][] magicOdd(int n) {  
        int[][] square = new int[n + 1][n + 1];  
        int i = 0;  
        int j = (n + 1) / 2;  
        for (int key = 1; key <= n * n; key++) {  
            if ((key % n) == 1) i++;  
            else {  
                i--;  
                j++;  
            }  
            if (i == 0) i = n;  
            if (j > n) j = 1;  
            square[i][j] = key;  
        }  
        int[][] matrix = new int[n][n];  
        for (int k = 0; k < matrix.length; k++) {  
            for (int l = 0; l < matrix[0].length; l++) {  
                matrix[k][l] = square[k + 1][l + 1];  
            }  
        }  
        return matrix;  
    }  
    public static void main(String[] args) {  
        int[][] magic = Matrix.magicOdd(5);  
        for (int k = 0; k < magic.length; k++) {  
            for (int l = 0; l < magic[0].length; l++) {  
                System.out.print(magic[k][l] + " ");  
            }  
            System.out.println();  
        }  
    }  
}  

(26)4N魔方阵

说明:

与 奇数魔术方阵 相同,在于求各行、各列与各对角线的和相等,而这次方阵的维度是4的倍数。

解法:

先来看看4X4方阵的解法:

简单的说,就是一个从左上由1依序开始填,但遇对角线不填,另一个由左上由16开始填,但只填在对角线,再将两个合起来就是解答了;如果N大于2,则以 4X4为单位画对角线:

至于对角线的位置该如何判断,有两个公式,有兴趣的可以画图印证看看,如下所示:

左上至右下:j % 4 == i % 4

右上至左下:(j % 4 + i % 4) == 1

实现:

public class Matrix2 {  
    public static int[][] magicFourN(int n) {  
        int[][] square = new int[n + 1][n + 1];  
        for (int j = 1; j <= n; j++) {  
            for (int i = 1; i <= n; i++) {  
                if (j % 4 == i % 4 || (j % 4 + i % 4) == 1) square[i][j] = (n + 1 - i) * n - j + 1;  
                else square[i][j] = (i - 1) * n + j;  
            }  
        }  
        int[][] matrix = new int[n][n];  
        for (int k = 0; k < matrix.length; k++) {  
            for (int l = 0; l < matrix[0].length; l++) {  
                matrix[k][l] = square[k + 1][l + 1];  
            }  
        }  
        return matrix;  
    }  
    public static void main(String[] args) {  
        int[][] magic = Matrix2.magicFourN(8);  
        for (int k = 0; k < magic.length; k++) {  
            for (int l = 0; l < magic[0].length; l++) {  
                System.out.print(magic[k][l] + " ");  
            }  
            System.out.println();  
        }  
    }  
}  

(27)2(2n+1)魔方阵

说明:

方阵的维度整体来看是偶数,但是其实是一个奇数乘以一个偶数,例如6X6,其中6=2X3,我们也称这种方阵与单偶数方阵。

解法:

如果您会解奇数魔术方阵,要解这种方阵也就不难理解,首先我们令n=2(2m+1),并将整个方阵看作是数个奇数方阵的组合,如下所示:

首先依序将A、B、C、D四个位置,依奇数方阵的规则填入数字,填完之后,方阵中各行的和就相同了,但列与对角线则否,此时必须在A-D与C- B之间,作一些对应的调换,规则如下:

将A中每一列(中间列除外)的头m个元素,与D中对应位置的元素调换。

将A的中央列、中央那一格向左取m格,并与D中对应位置对调

将C中每一列的倒数m-1个元素,与B中对应的元素对调

举个实例来说,如何填6X6方阵,我们首先将之分解为奇数方阵,并填入数字,如下所示:

接下来进行互换的动作,互换的元素以不同颜色标示,如下:

实现:

public class Matrix3 {  
    public static int[][] magic22mp1(int n) {  
        int[][] square = new int[n][n];  
        magic_o(square, n / 2);  
        exchange(square, n);  
        return square;  
    }  
    private static void magic_o(int[][] square, int n) {  
        int row = 0;  
        int column = n / 2;  
        for (int count = 1; count <= n * n; count++) {  
            square[row][column] = count;  
            // 填A  
            square[row + n][column + n] = count + n * n;  
            // 填B  
            square[row][column + n] = count + 2 * n * n;  
            // 填C  
            square[row + n][column] = count + 3 * n * n;  
            // 填D  
            if (count % n == 0) row++;  
            else {  
                row = (row == 0) ? n - 1 : row - 1;  
                column = (column == n - 1) ? 0 : column + 1;  
            }  
        }  
    }  
    private static void exchange(int[][] x, int n) {  
        int i, j;  
        int m = n / 4;  
        int m1 = m - 1;  
        for (i = 0; i < n / 2; i++) {  
            if (i != m) {  
                for (j = 0; j < m; j++)  
                // 处理规则 1  
                    swap(x, i, j, n / 2 + i, j);  
                for (j = 0; j < m1; j++)  
                // 处理规则 2  
                    swap(x, i, n - 1 - j, n / 2 + i, n - 1 - j);  
            } else {  
                // 处理规则 3  
                for (j = 1; j <= m; j++) swap(x, m, j, n / 2 + m, j);  
                for (j = 0; j < m1; j++) swap(x, m, n - 1 - j, n / 2 + m, n - 1 - j);  
            }  
        }  
    }  
    private static void swap(int[][] number, int i, int j, int k, int l) {  
        int t;  
        t = number[i][j];  
        number[i][j] = number[k][l];  
        number[k][l] = t;  
    }  
    public static void main(String[] args) {  
        int[][] magic = Matrix3.magic22mp1(6);  
        for (int k = 0; k < magic.length; k++) {  
            for (int l = 0; l < magic[0].length; l++) {  
                System.out.print(magic[k][l] + " ");  
            }  
            System.out.println();  
        }  
    }  
}  

你可能感兴趣的:(java)