- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- LSTM-SVM故障诊断 | 基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现
机器学习之心
分类预测神经网络lstm支持向量机LSTM-SVM故障诊断
LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现完整代码私信回复LSTM-SVM故障诊断|基于长短期记忆神经网络-支持向量机多特征分类预测/故障诊断Matlab代码实现一、引言1.1、研究背景和意义在现代工业生产中,机械设备的高效稳定运行对保障生产安全和提高生产效率至关重要。因此,故障诊断技术作为预防和维护设备性能的关键手段,受到了广泛关注和
- QT5在windows下调用OpenCV库出现: undefined reference to `xxxxx' 错误解决办法(适用MinGW编译器)。
DS小龙哥
QT(C++)应用软件开发AI人工智能opencv
一、环境介绍window系统:win10X64QT版本:5.12QT5.12自带的MinGW编译器版本:mingw730_32与mingw730_64在QT的安装目录下,可以查看MinGW编译器的版本:二、使用OpenCV出现的问题在QT框架代码里使用老版本的分类器(cvLoad、cvHaarDetectObjects)处理图像时,正常编译没有问题,当使用新版本级联分类器(CascadeClass
- 朴素贝叶斯模型在文本分类中的应用
Ash Butterfield
nlp分类数据挖掘人工智能
朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的概率分类算法,广泛应用于文本分类任务中。它的核心思想是根据训练数据中不同类别的条件概率,预测新文本属于哪个类别。尽管其假设条件较为简单(假设特征之间相互独立),但朴素贝叶斯在许多实际应用中仍表现出色,特别是在处理文本分类任务时。本文将介绍朴素贝叶斯模型的基本原理、在文本分类中的应用以及其优缺点,并通过示例说明其具体实现。1.朴素贝叶斯模型的基
- OpenCV:人脸检测与Haar级联分类器(十三)
WHCIS
opencvopencv数学建模人工智能计算机视觉音视频算法
一、Haar级联检测深度解析1.1Haar特征数学建模Haar特征的本质是通过矩形区域对比捕捉局部特征,其数学形式可扩展为四元组表示:特征定义:Haar(f)=(t,x,y,w,h)×s\text{Haar}(f)=(t,x,y,w,h)\timessHaar(f)=(t,x,y,w,h)×s其中:ttt表示特征类型(共14种基础变体)(x,y)(x,y)(x,y)为特征锚点坐标(w,h)(w,h
- 第二章:13.1 机器学习的迭代发展
望云山190
机器学习人工智能
目录机器学习模型开发流程构建电子邮件垃圾邮件分类器示例总结垃圾邮件分类示例构建垃圾邮件分类器机器学习模型开发流程确定系统架构:首先,需要决定机器学习系统的总体架构,这包括选择合适的模型、确定使用的数据集、可能还包括选择超参数等。实现和训练模型:根据上述决定,实现并训练一个模型。通常,第一次训练的模型不会立即达到预期的效果。诊断和调整:对模型进行诊断,查看算法的偏差、方差或进行错误分析。根据诊断结果
- 【机器学习】逻辑回归(LogisticRegression)原理与实战
GentleCP
机器学习(深度学习)逻辑回归logisticregression原理与实战机器学习
文章目录前言一、什么是逻辑回归1.1逻辑回归基础概念1.2逻辑回归核心概念二、逻辑回归Demo2.1数据准备2.2创建逻辑回归分类器2.3分类器预测三、逻辑回归实战3.1数据准备3.2数据划分与模型创建3.3预测数据评估模型四、参数选择五、总结六、参考资料本文属于我的机器学习/深度学习系列文章,点此查看系列文章目录前言本文主要通过文字和代码样例讲述逻辑回归的原理(包含逻辑回归的基础概念与推导)和实
- ML.NET库学习006:成人人口普查数据分析与分类预测
North_D
ML.NET库机器学习人工智能深度学习数据挖掘目标检测自然语言处理神经网络
文章目录ML.NET库学习006:成人人口普查数据分析与分类预测概述数据集数据字段解释为何数据准备很重要主要功能与模块数据准备机器学习工作流代码结构说明数据准备模块机器学习工作流数据加载与分割特征工程与模型训练模型评估与预测实现细节与注意事项数据准备模块机器学习工作流性能优化项目优势LightGBM分类器原理说明总结ML.NET库学习006:成人人口普查数据分析与分类预测概述本项目使用C#和ML.
- 焦损函数(Focal Loss)与RetinaNet目标检测模型详解
人工智能
焦损函数(FocalLoss)与RetinaNet目标检测模型详解阅读时长:19分钟发布时间:2025-02-14近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】目前,精度最高的目标检测器大多基于由R-CNN推广的两阶段方法,即对稀疏的候选目标位置集应用分类器。相比之下,在规则、密集的可
- 【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)
天天科研工作室
故障诊断模型RIME-CNN-SVM故障诊断matlabcnn
【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章目录【故障诊断】基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型(matlab)文章介绍基本步骤代码分享运行结果参考资料文章介绍基于RIME-CNN-SVM霜冰算法优化卷积神经网络结合支持向量机的故障诊断模型是一种利用MATLAB编程环境,结合RIME-C
- 机器学习算法工程师笔试选择题(1)
Ash Butterfield
机器学习算法人工智能
1.关于梯度下降的说法正确的是:A.梯度下降法可以确保找到全局最优解。B.随机梯度下降每次使用所有数据来更新参数。C.批量梯度下降(BatchGradientDescent)通常收敛更快。D.学习率过大会导致梯度下降过程震荡。答案:D(学习率过大会导致不稳定,可能震荡或无法收敛)2.在以下算法中,哪种算法属于无监督学习?A.逻辑回归B.K-近邻算法C.支持向量机D.K-均值聚类答案:D(K-均值聚
- R-CNN架构
人工智能
R-CNN架构架构RCCN由三个模块组成:第一个模块生成与类别无关的区域提议。这些提议定义了我们的检测器可用的候选检测集。第二个模块是一个大型卷积神经网络,它从每个区域中提取固定长度的特征向量。第三个模块是一组特定类别的线性支持向量机(SVM)。虽然R-CNN对特定的区域提议方法不挑剔,但选择性搜索(Selectivesearch)是最常用的方法,以便与之前的检测工作进行有对照的比较。实现在测试时
- 图像分类与目标检测算法
BugNest
AI算法分类目标检测ai人工智能图像处理
在计算机视觉领域,图像分类与目标检测是两项至关重要的技术。它们通过对图像进行深入解析和理解,为各种应用场景提供了强大的支持。本文将详细介绍这两项技术的算法原理、技术进展以及当前的落地应用。一、图像分类算法图像分类是指将输入的图像划分为预定义的类别之一。这一过程的核心在于特征提取和分类器的设计。1.特征提取特征提取是图像分类的第一步,其目标是从图像中提取出能够区分不同类别的关键信息。传统的特征提取方
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 逻辑回归不能解决非线性问题,而svm可以解决
江河地笑
机器学习逻辑回归支持向量机算法
逻辑回归和支持向量机(SVM)是两种常用的分类算法,它们在处理数据时有一些不同的特点,特别是在面对非线性问题时。1.逻辑回归逻辑回归本质上是一个线性分类模型。它的目的是寻找一个最适合数据的直线(或超平面),用来将不同类别的数据分开。它的分类决策是基于输入特征的加权和,即:由于逻辑回归是线性模型,因此它只能在数据集是线性可分的情况下表现良好。如果数据的分布是非线性的,逻辑回归可能无法有效地分类,因为
- 基于 STM32 平台的音频特征提取与歌曲风格智能识别系统
赵谨言
论文经验分享毕业设计
标题:基于STM32平台的音频特征提取与歌曲风格智能识别系统内容:1.摘要摘要:本文介绍了一种基于STM32平台的音频特征提取与歌曲风格智能识别系统。该系统通过对音频信号进行特征提取和分析,实现了对歌曲风格的自动识别。在特征提取方面,系统采用了快速傅里叶变换(FFT)和梅尔频率倒谱系数(MFCC)等方法,对音频信号进行了时频域分析和声学特征提取。在歌曲风格识别方面,系统采用了支持向量机(SVM)和
- 让 LLM 来评判 | 选择 LLM 评估模型
人工智能llm
基础概念这是让LLM来评判系列文章的第一篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示什么是评估模型?评估模型(Judgemodels)是一种用于评估其他神经网络的神经网络。大多数情况下它们用来评估生成文本的质量。评估模型涵盖的范围很广,从小型的特定分类器(例如“垃圾邮件分类器”)到大型的LLM,或大而广、或小而专。使用LLM
- 让 LLM 来评判 | 基础概念
llm人工智能
基础概念这是让LLM来评判系列文章的第一篇,敬请关注系列文章:基础概念选择LLM评估模型设计你自己的评估prompt评估你的评估结果奖励模型相关内容技巧与提示什么是评估模型?评估模型(Judgemodels)是一种用于评估其他神经网络的神经网络。大多数情况下它们用来评估生成文本的质量。评估模型涵盖的范围很广,从小型的特定分类器(例如“垃圾邮件分类器”)到大型的LLM,或大而广、或小而专。使用LLM
- Python与R机器学习(1)支持向量机
宠物与不尤编程
左手python右手R支持向量机机器学习pythonr语言
以下是对Python与R在支持向量机(SVM)实现上的核心区别分析及完整示例代码:一、核心差异对比特征Python(scikit-learn)R(e1071/kernlab)核心库sklearn.svm.SVC/SVRe1071::svm()或kernlab::ksvm()语法范式面向对象(先初始化模型后拟合)函数式+公式接口(y~x1+x2)核函数支持linear,poly,rbf,sigmoi
- 实践深度学习:构建一个简单的图像分类器
是Dream呀
深度学习人工智能
引言深度学习在图像识别领域取得了巨大的成功。本文将指导你如何使用深度学习框架来构建一个简单的图像分类器,我们将以Python和TensorFlow为例,展示从数据准备到模型训练的完整流程。环境准备在开始之前,请确保你的环境中安装了以下工具:Python3.xTensorFlow2.xNumPyMatplotlib(用于数据可视化)你可以通过以下命令安装所需的库:pipinstalltensorfl
- 【人工智能-初级】第20章 使用 Matplotlib 和 Seaborn 进行数据可视化
若北辰
人工智能信息可视化人工智能matplotlib
【人工智能-初级】系列专栏【人工智能-初级】第1章人工智能概述【人工智能-初级】第2章机器学习入门:从线性回归开始【人工智能-初级】第3章k-最近邻算法(KNN):分类和Python实现【人工智能-初级】第4章用Python实现逻辑回归:从数据到模型【人工智能-初级】第5章支持向量机(SVM):原理解析与代码实现【人工智能-初级】第6章决策树和随机森林:浅显易懂的介绍及Python实践【人工智能-
- 【LSSVM时间序列预测】白鲨算法优化最小二乘支持向量机WSO-LSSVM时序预测未来数据【含Matlab源码 2483期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 锂电池剩余寿命预测 | 基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究附Matlab参考代码
默默科研仔
锂电池寿命预测支持向量机PSO-SVM粒子群优化支持向量机锂电池剩余寿命预测
基于PSO-SVM粒子群优化支持向量机的锂电池剩余寿命预测研究一、引言1.1、研究背景与意义随着科技的迅速发展,锂电池因其高能量密度、长循环寿命等优点,已广泛应用于移动设备、电动汽车等领域。准确预测锂电池的剩余寿命(RUL),不仅有助于提高设备的运行效率和安全性,还能有效降低维护成本,延长设备使用寿命。因此,锂电池剩余寿命预测研究具有重要的理论和实际应用价值。1.2、研究现状目前,锂电池剩余寿命预
- 机器学习算法 —— 朴素贝叶斯
ZShiJ
机器学习算法机器学习算法分类贝叶斯
欢迎来到我的博客——探索技术的无限可能!博客的简介(文章目录)目录朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯的优点朴素贝叶斯的缺点朴素贝叶斯的应用实战(贝叶斯分类)莺尾花数据库函数导入数据导入和分析模型训练模型预测原理简析模拟离散数据集朴素贝叶斯朴素贝叶斯的介绍朴素贝叶斯法=贝叶斯定理+特征条件独立。朴素贝叶斯(NaiveBayes)是基于贝叶斯定理的概率分类算法。该算法假设特征之间相互独立,即某个特征
- 必知!10大机器学习算法
人工智能
必知!10大机器学习算法7分钟阅读2025年02月06日“机器学习是一门让计算机在没有明确编程的情况下采取行动的科学。”——吴恩达近日热文:全网最全的神经网络数学原理(代码和公式)直观解释欢迎关注知乎和公众号的专栏内容LLM架构专栏知乎LLM专栏知乎【柏企】公众号【柏企科技说】【柏企阅文】1.K最近邻(KNN)KNN是一种简单却强大的分类算法,它依据数据点之间的邻近程度来判断类别归属。具体做法是,
- 机器学习算法-逻辑回归
Larkin88
机器学习算法逻辑回归
机器学习算法-逻辑回归1.K-近邻算法(略)2.线性回归(略)3.逻辑回归3.1逻辑回归介绍逻辑回归(LogisticRegression)是机器学习中的一种分类模型,逻辑回归是一种分类算法,虽然名字中带有回归,但是它与回归之间有一定的练习。由于算法的简单和高效,在实际中应用非常广泛。1、逻辑回归的应用场景广告点击率是否为垃圾邮件是否患病金融诈骗虚假账号2逻辑回归的原理2.1输入$$h(w)=w_
- 深入详解人工智能机器学习算法——逻辑回归算法
猿享天开
人工智能基础知识学习人工智能机器学习算法逻辑回归
引言逻辑回归(LogisticRegression)是机器学习中一种基本而重要的分类算法。在这篇文章中,我们将深入解析逻辑回归的各个方面,包括其基础知识、数学原理、实现方法、以及应用场景。我们还将通过具体的代码示例和应用案例,帮助您全面理解逻辑回归算法。第一部分:逻辑回归的基础知识1.1什么是逻辑回归?逻辑回归是一种用于解决二分类问题的回归分析方法。尽管名字中带有“回归”,逻辑回归的目标是将预测结
- scikit-learn实现SVM
PeterClerk
支持向量机scikit-learn算法
支持向量机(SVM)是一种监督学习算法,主要用于分类和回归分析。其基本原理是在数据集中找到一个最优的超平面,使得不同类别的数据被最大间隔分开。最大间隔超平面:SVM的目标是找到能够最大化训练样本间隔的超平面。间隔被定义为到最近训练样本点的距离,这些点被称为支持向量。这种策略的优势在于它提供了一种防止模型过拟合的方法,从而提高了泛化能力。核技巧:在实际应用中,许多数据集不是线性可分的,这就需要使用核
- 自定义数据集 ,使用朴素贝叶斯对其进行分类
知识鱼丸
machinelearning机器学习
数据集定义:-data列表包含了文本样本及其对应的情感标签。每个元素是一个元组,第一个元素是文本,第二个元素是标签。特征提取:-使用CountVectorizer将文本转换为词频向量。fit_transform方法在训练数据上拟合向量器并进行转换。模型训练:-初始化MultinomialNB模型,这是适用于离散数据(如词频)的朴素贝叶斯分类器。-使用fit方法在提取的特征和标签上训练模型。预测:-
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户