1、surf(Z);
Z为一个矩阵,如果Z是向量,那么就需要先将其转换为矩阵
reshape(Z,[length(X),length(Y)]); X和Y为你的横坐标取值个数。
具体代码调用格式如下
Z=reshape(acc,[length(lambda2),length(lambda1)]); surf(Z); xlabel('\alpha','fontsize',20); set(gca, 'xtick',1:2:11); set(gca,'xticklabel',{'10^-5','10^-3','10^-1','10^1','10^3','10^5'}) ylabel('\beta','fontsize',20); set(gca, 'ytick',1:2:11); set(gca,'yticklabel',{'10^-5','10^-3','10^-1','10^1','10^3','10^5'}); zlabel('Classification accuracy (%)','fontsize',20); colorbar('fontsize',12); view(135,55); title('AR','fontsize',20); print('-depsc','AR_4.eps');
2、matlab plotyy 一条横轴,两条纵轴
clear all
clc
figure;
COIL20_convergence_Acc = xlsread(‘收敛曲线.xls');
obj = COIL20_convergence_Acc(:,1)';
eachacc = COIL20_convergence_Acc(:,2)';
x = 1:size(obj,2);
[AX,H1,H2] = plotyy(x,obj,x,eachacc,'plot');
legend('Objective function value','Classification accuracy');
set(gca,'fontsize',14);
% set(get(AX(1),'Xlabel'),'String','Number of iterations');
set(get(AX(1),'Ylabel'),'String','Objective function value','fontsize',14,'color','k');
set(get(AX(2),'Ylabel'),'String','Classification accuracy','fontsize',14,'color','k');
xlabel('Number of iterations');
set(get(gca,'xlabel'),'fontsize',14); % 设置标尺字体大小
set(H1,'marker','.');
set(H2,'marker','.');
3、scatter3, 画散点图
对于一个n_sample*dim_fea的数据(1000*3维数据)
调用格式为:scatter3(X(:,1),X(:,2),X(:,3),'b','o','filled'); % 其中b为颜色,o为用圆圈标记,filled表示实心
scatter(
: a为区域尺寸, c为数据点颜色(向量)。x
,y
,a
,c
)
scatter(LPP_data(:,1),LPP_data(:,2),12,1:1:1000,'+');
PCA LPP NPE对于随机散点图降维显示结果如下: 部分降维代码见:http://lvdmaaten.github.io/drtoolbox/#download
% 散点图 降维学习 clear all clc addpath('G:\机器学习\代码和数据集\代码\降维\drtoolbox\techniques\'); % load twinpeaks; [X, labels, t] = generate_data('twinpeaks',1000); % swiss % load swiss figure; scatter3(X(:,1),X(:,2),X(:,3),12,1:1:1000,'o'); title('original twinpeaks'); % PCA options.ReducedDim = 2; [eigvector, eigvalue, meanData, PCA_data] = PCA(X, options); figure; scatter(PCA_data(:,1),PCA_data(:,2),12,1:1:1000,'o'); title('PCA twinpeaks'); % [mappedX, mapping] = pca(X, 2); % NPE no_dims = 2; k = 10; [NPE_data, mapping] = npe(X, no_dims, k); figure; scatter(NPE_data(:,1),NPE_data(:,2),12,1:1:1000,'o'); title('NPE twinpeaks'); % LPP [LPP_data, mapping] = lpp(X, no_dims, k); figure; % scatter(LPP_data(:,1),LPP_data(:,2),12,'b','.'); title('LPP twinpeaks'); % figure; scatter(LPP_data(:,1),LPP_data(:,2),12,1:1:1000,'o'); title('LPP twinpeaks');
4、生成颜色矩阵 colour = hsv(num)
5、按照类标来显示散度图
% 散点图 降维学习 clear all clc addpath('G:\机器学习\代码和数据集\代码\降维\drtoolbox\techniques\'); % load twinpeaks; [X, labels, t] = generate_data('twinpeaks',1000); % swiss % load swiss figure; indx = find(labels == -1); scatter3(X(indx,1),X(indx,2),X(indx,3),12,'b','o'); hold on indx1 = find(labels == 0); scatter3(X(indx1,1),X(indx1,2),X(indx1,3),12,'k','o'); title('original twinpeaks'); % PCA options.ReducedDim = 2; [eigvector, eigvalue, meanData, PCA_data] = PCA(X, options); figure; scatter(PCA_data(indx,1),PCA_data(indx,2),12,'b','o'); hold on scatter(PCA_data(indx1,1),PCA_data(indx1,2),12,'k','o'); title('PCA twinpeaks'); % [mappedX, mapping] = pca(X, 2); % NPE no_dims = 2; k = 10; [NPE_data, mapping] = npe(X, no_dims, k); figure; scatter(NPE_data(indx,1),NPE_data(indx,2),12,'b','o'); hold on scatter(NPE_data(indx1,1),NPE_data(indx1,2),12,'k','o'); title('NPE twinpeaks'); % LPP [LPP_data, mapping] = lpp(X, no_dims, k); figure; % scatter(LPP_data(:,1),LPP_data(:,2),12,'b','.'); title('LPP twinpeaks'); % figure; scatter(LPP_data(indx,1),LPP_data(indx,2),12,'b','o'); hold on scatter(LPP_data(indx1,1),LPP_data(indx1,2),12,'k','o'); title('LPP twinpeaks');
6
未完待续