核主成份分析的MatLab实现

最近准备往核方法方向发展,于是仔细研读了经典的核主成份分析方法。通过参考别人的源代码,自己实现了KPCA,基本了解了核方法的实质。个人体会亲手实现一下还是很有益的。matlab源代码如下:

function [eigvector, eigvalue,Y] = KPCA(X,r,opts)

%

% Kernel Principal Component Analysis

% [eigvector, eigvalue,Y] = KPCA(X,r,opts)

% Input:

% X: d*N data matrix;Each column vector of X is a sample vector.

% r: Dimensionality of reduced space (default: d)

% opts:   Struct value in Matlab. The fields in options that can be set:           

%         KernelType  -  Choices are:

%                  'Gaussian'      - exp{-gamma(|x-y|^2)}

%                  'Polynomial'    - (x'*y)^d

%                  'PolyPlus'      - (x'*y+1)^d

%         gamma       -  parameter for Gaussian kernel

%         d           -  parameter for polynomial kernel

%

% Output:

% eigvector: N*r matrix;Each column is an embedding function, for a new

%            data point (column vector) x,  y = eigvector'*K(x,:)'

%            will be the embedding result of x.

%            K(x,:) = [K(x1,x),K(x2,x),...K(xN,x)]

% eigvalue: The sorted eigvalue of KPCA eigen-problem.

% Y       : Data matrix after the nonlinear transform

if nargin<1

  error('Not enough input arguments.')

end

[d,N]=size(X);

if nargin<2

  r=d;

end

%% Ensure r is not bigger than d

if r>d

    r=d;

end;

% Construct the Kernel matrix K

K =ConstructKernelMatrix(X,[],opts);

% Centering kernel matrix

One_N=ones(N)./N;

Kc = K - One_N*K - K*One_N + One_N*K*One_N;

clear One_N;

% Solve the eigenvalue problem N*lamda*alpha = K*alpha

if N>1000 && r


    % using eigs to speed up!

    opts.disp=0;

    [eigvector, eigvalue] = eigs(Kc,r,'la',opts);

    eigvalue = diag(eigvalue);

else

    [eigvector, eigvalue] = eig(Kc);

    eigvalue = diag(eigvalue);

    [junk, index] = sort(-eigvalue);

    eigvalue = eigvalue(index);

    eigvector = eigvector(:,index);

end

if r < length(eigvalue)

    eigvalue = eigvalue(1:r);

    eigvector = eigvector(:, 1:r);

end

% Only reserve the eigenvector with nonzero eigenvalues

maxEigValue = max(abs(eigvalue));

eigIdx = find(abs(eigvalue)/maxEigValue < 1e-6);

eigvalue (eigIdx) = [];

eigvector (:,eigIdx) = [];

% Normalizing eigenvector

for i=1:length(eigvalue)

    eigvector(:,i)=eigvector(:,i)/sqrt(eigvalue(i));

end;

if nargout >= 3

    % Projecting the data in lower dimensions

    Y = eigvector'*K;

end

 

function K=ConstructKernelMatrix(X,Y,opts)

%

% function K=ConstructKernelMatrix(X,Y,opts)

% Usage:

%   opts.KernelType='Gaussian';

% K = ConstructKernelMatrix(X,[],opts)

%   K = ConstructKernelMatrix(X,Y,opts)

%

% Input:

% X: d*N data matrix;Each column vector of X is a sample vector.

% Y: d*M data matrix;Each column vector of Y is a sample vector.

% opts:   Struct value in Matlab. The fields in options that can be set:                

%         KernelType  -  Choices are:

%                  'Gaussian'      - exp{-gamma(|x-y|^2)}

%                  'Polynomial'    - (x'*y)^d

%                  'PolyPlus'      - (x'*y+1)^d

%         gamma       -  parameter for Gaussian kernel

%         d           -  parameter for polynomial kernel

% Output:

% K N*N or N*M matrix

if nargin<1

  error('Not enough input arguments.')

end

if (~exist('opts','var'))

   opts = [];

else

   if ~isstruct(opts)

       error('parameter error!');

   end

end

N=size(X,2);

if isempty(Y)

    K=zeros(N,N);

else

    M=size(Y,2);

    if size(X,1)~=size(Y,1)

        error('Matrixes X and Y should have the same row dimensionality!');

    end;

    K=zeros(N,M);

end;

%=================================================

if ~isfield(opts,'KernelType')

    opts.KernelType = 'Gaussian';   

end

switch lower(opts.KernelType)

    case {lower('Gaussian')}        %  exp{-gamma(|x-y|^2)}

        if ~isfield(opts,'gamma')

            opts.gamma = 0.5;

        end

    case {lower('Polynomial')}      % (x'*y)^d

        if ~isfield(opts,'d')

            opts.d = 1;

        end

    case {lower('PolyPlus')}      % (x'*y+1)^d

        if ~isfield(opts,'d')

            opts.d = 1;

        end      

    otherwise

       error('KernelType does not exist!');

end

switch lower(opts.KernelType)

    case {lower('Gaussian')}      

        if isempty(Y)

            for i=1:N

               for j=i:N

                   dist = sum(((X(:,i) - X(:,j)).^2));

                    temp=exp(-opts.gamma*dist);

                    K(i,j)=temp;

                    if i~=j

                        K(j,i)=temp;

                    end;

                end

            end

        else

            for i=1:N

               for j=1:M

                    dist = sum(((X(:,i) - Y(:,j)).^2));

                    K(i,j)=exp(-opts.gamma*dist);                  

                end

            end

        end      

    case {lower('Polynomial')}    

        if isempty(Y)

            for i=1:N

                for j=i:N                   

                    temp=(X(:,i)'*X(:,j))^opts.d;

                    K(i,j)=temp;

                    if i~=j

                        K(j,i)=temp;

                    end;

                end

            end

        else

            for i=1:N

                for j=1:M                                      

                    K(i,j)=(X(:,i)'*Y(:,j))^opts.d;

                end

            end

        end      

    case {lower('PolyPlus')}    

        if isempty(Y)

            for i=1:N

                for j=i:N                   

                    temp=(X(:,i)'*X(:,j)+1)^opts.d;

                    K(i,j)=temp;

                    if i~=j

                        K(j,i)=temp;

                    end;

                end

            end

        else

            for i=1:N

                for j=1:M                                      

                    K(i,j)=(X(:,i)'*Y(:,j)+1)^opts.d;

                end

            end

        end      

    otherwise

        error('KernelType does not exist!');

end

参考文献:

[1]B. Sch¨olkopf, A.J. Smola, and K.-R M¨uller, “Nonlinear component analysis as a kernel eigenvalue problem,”Neural Computation, vol. 10, pp. 1299–1319, 1998.

 

[2]KERNEL PRINCIPAL COMPONENT ANALYSIS FOR FEATURE REDUCTION IN HYPERSPECTRALE IMAGES ANALYSIS

[3]http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html

 

KPCA 算法:

核主成份分析的MatLab实现_第1张图片

引用地址:http://blog.sciencenet.cn/blog-457187-342046.html

注意:

1.如果出现错误:

Undefined function or method 'ConstructKernelMatrix' for input arguments of type 'double'

可以把ConstructKernelMatrix函数另存为一个*.m文件试试。

2.若有其他错误,请回复,共同解决。

 

 

 

你可能感兴趣的:(Matlab,Machine,Learning)