- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 方差分析表和回归分析表的那些浆糊糊
Angel Q.
线性回归方差分析回归分析概率论
先上表!我们来看一些基本的名词:(公式编辑还在学x的均值一直打不出来有会的还请评论区教教我)1.1方差分析表其中:k—因素总体的个数;n—观测值个数SSA(组间离差平方和)是:个水平组均值与总体均值离差的平方和;反映了控制变量不同水平对观测变量的影响SSE(组内离差平方和)是:每个观测数据与本水平组均值离差的平方和;反映了抽样误差的大小SST(总离差平方和)是:SSA+SSE1.2回归分析表直观来
- 从0开始学习R语言--Day09--方差分析
Chef_Chen
学习r语言开发语言
前两天我们学习了T检验来判断两组数据之间的差异是显著存在还是因为偶然,但如果存在多组数据,我们还是两两去对比作T检验的话,会存在假阳性(也就是把没有差异判断为有差异),虽然每次单独的T检验只有5%,但即使数据只是多了三组,也要作三次T检验,假阳性的概率就被叠加到了大概14%。方差分析而如果我们采用方差分析的方式,先判断是否存在差异,并在后续判断两两之间的差异时,考虑数据组内的差异性,因为存在即使两
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- Python设计方差分析实验
Mr数据杨
Python数据分析师python数据分析人工智能
方差分析(ANOVA)是一种用于检测多个样本均值之间差异的统计方法,广泛应用于实验设计与数据分析中。通过分析不同因素对实验结果的影响,方差分析能够帮助评估哪些因素显著影响了实验结果,并且可以提供各因素交互作用的深入理解。在多因子实验设计中,随机化、重复和平衡的设计原则非常重要。本文将详细介绍方差分析的实验设计原理,并结合拉丁方设计与正交试验的应用进行讲解。本教程旨在帮助自学者理解方差分析的基本原理
- R语言学习--Day01--数据清洗初了解andR的经典筛选语法
Chef_Chen
学习
当我们在拿到一份数据时,是否遇到过想要分析数据却无从下手?通过编程语言去利用它时发现有很多报错不是来源于代码而是因为数据里有很多脏数据;在这个时候,如果你会用R语言来对数据进行清洗,这会让你的效率提升很多。R语言的典型使用场景统计分析执行假设检验(t检验、卡方检验)、回归分析、方差分析等优势:内置stats包提供100+统计函数,如lm(),aov()数据可视化绘制统计图表(散点图、箱线图、热力图
- 2023年第十四届蓝桥杯省赛C++ 大学生A组
qq_56607982
蓝桥杯c++职场和发展
基本没有算法基础,第一次参加蓝桥杯,简单复盘一下。目录试题A幸运数分析枚举O(K)试题B有奖问答分析DFS试题C平方差分析枚举O(n^3)因数分解O(n*sqrt(n))奇偶判断O(n)试题D更小的数分析动态规划DPO(n^2)试题E颜色平衡树分析试题F买瓜分析试题I网络稳定性分析并查集+dijkstra算法试题A幸运数分析:1~10e8,不用考虑奇数位跳过的问题,直接枚举。枚举O(K)#incl
- R语言堆叠占比柱状图_R语言统计篇:单因素方差分析
weixin_39628063
R语言堆叠占比柱状图r语言多重对应分析r语言径向柱状图做方差分析需要正态性检验吗用R语言做词频统计
点击蓝字就可以关注"R语言与统计"哦~~:大家好~~~又是干货满满的一天!往期文章介绍过独立样本t检验(R语言统计篇:独立样本t检验),可以用于两个独立样本的均数比较。今天的内容是单因素方差分析(one-factorANOVA或one-wayANOVA),与独立样本t检验非常类似,都属于参数性检验。不同点在于:单因素方差分析可以用于大于两个样本的均数比较。与所有的参数性检验类似,使用单因素方差分析
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- html利用列表写单选题,请写出利用列表标签实现如下图所示效果的HTML代码:
小花学姐
html利用列表写单选题
【判断题】服务消费过程中各个步骤的不同性质取决于服务是高接触度服务还是低接触度服务。【单选题】下列不能形成氨配合物的离子是()。【判断题】线性无关组的任意一个部分向量组的线性相关性为相关。【单选题】火腿的腌制方法为()。【填空题】用修饰符修饰的成员只能在自己类中直接访问。【判断题】威尔克斯统计量在多元方差分析中是用于检验均值是否相等的统计量。【单选题】净重为61kg的生丝,实际回潮率为12.6%,
- 使用python进行单因素方差分析(ANOVA)和事后多重比较(LSD)
thinkwindows
数据分析python算法excel
#idea来源#在使用spss帮朋友做单因素分析时,发现个别数据需要调整到符合显著性的要求,在spss中修改数据,再在spss中操作步骤太麻烦,于是有了这个想法。程序思路1、将数据放到excel里,确定两列数据,Group(分组数据)和B(对应数据列)2、程序读取excel数据3、整理数据格式,将数据分组,将数据从宽格式转换为长格式,以便于进行ANOVA分析。4、执行单因素方差分析(ANOVA),
- 从原理和公式出发:python实现One_Way_ANOVA
^哪来的&永远~
python算法概率论
文章目录目的:python实现onewayANOVA单因素方差分析1.代码流程2.python代码实现0主要的函数1加载数据2查看数据统计结果3数据处理及可视化4方差分析4.1模型拟合4.2单因素方差分析5PostHoct-test组间比较分析6根据定义自行分解计算对比调用函数的结果7获取F分布对应的P值3.方差分析公式及原理参考目的:python实现onewayANOVA单因素方差分析方差分析(
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- 多独立样本秩检验:Kruskal-Wallis检验
木子算法
非参数统计非参数检验概率论统计
多独立样本秩检验:Kruskal-Wallis检验的理论与实践一、引言在统计学中,当数据不满足正态分布或方差齐性假设时,传统的参数检验(如方差分析ANOVA)可能失效。此时,非参数检验方法(如秩检验)成为更可靠的选择。本文将详细介绍多独立样本秩检验的核心方法——Kruskal-Wallis检验,包括其理论基础、公式推导、案例分析及Python实现。二、理论基础1.问题定义假设我们有kkk个独立样本
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 【GRR】重复性和再现性
Stongtang
python
一、序章通常通过加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化。那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征
- ggplot2箱式图两两比较_科学网—ggplot2:方差分析多重比较标注显著字母 - 周运来的博文...
weixin_39548740
ggplot2箱式图两两比较
赖江山老师在科学网分享了FrancoisGillet编写的两个方差分析多重比较的函数boxplert()和boxplerk()【来源NumericalEcologywithR(secondEdition)】我看了一下出图的部分是用boxplot函数绘制的,作为一个ggplot2的爱好者自己尝试着用ggplot2把函数boxplert()重新写了一下。在重写的过程中收获几个问题:X轴如何按照给定的数
- python方差分析误差棒_一文讲透,带你学会用Python绘制带误差棒的柱状图和条形图...
加勒比考斯
python方差分析误差棒
Python数据可视化,作为数据常用的必备技能,是目前大数据和数据分析的一个热门,而matplotlib库作为Python中最为常用和经典的二维绘图库,受到了很多人的青睐,最近已经和大家共同探讨了多种类型的图表的绘制,其中关于误差棒图,咱们已经在上次一起讨论过了,今天咱们继续深入研究误差棒图相关的知识。那今天咱们聊点什么呢?咱们一起探讨一下如何在Python中绘制带误差棒的柱状图和条形图吧!首先,
- python绘制带有显著性差异的柱状图
彭博锐
python开发语言AI编程
直观认识有的时候看文献会发现柱状图上标记有不同的字母,这其实是使用字母表示法来代表不同组之间的差异,不同的字母表示具有显著性的差异,相同的字母表示没有显著性差异。图片来自文献(Lietal.,2019)含有大小写字母的两组方差分析参考自文献(马继龙等,2024)。显著性差异的表示方法常见的一般有P值、星号标记和字母标记等。1、P值:当P值小于或等于事先设定的显著性水平(通常是0.05)时,我们认为
- wps2019数据分析加载项_wps单因素分析数据 wps2019单因素方差分析
战斗力旺盛的伯爵
wps2019数据分析加载项
请问wpsexcel如何进行单因素方差分析?在“数据”选项下的“分析”“分析工具”中,选择“方差分析-单因素方差分析”,并进行相应的设置,即可。在WPS里面excel算显著性差异应该找哪里?1、如图,比较两组数据之间的差异性。2、首先需要为Excel添加分析工具的加载项插件,点击office按钮-excel选项-加载项-转到-勾选分析工具库。3、接下来需要选择数据区域,数据-分析-数据分析;选择单
- python 单因子方差分析_假设检验之F检验-方差分析
雏Carnation
python单因子方差分析
这一次我们来了解一下假设检验中另一个重要检验-F检验什么是F检验?F检验(F-test),最常用的别名叫做联合假设检验(英语:jointhypothesestest),此外也称方差比率检验、方差齐性检验,方差分析,它是一种在(H0)之下,统计值服从的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体F检验对于数据的正态性非常敏感,因此在检验方差齐
- python卡方检验计算pvalue值_Python数据科学:卡方检验
CodeWhiz
之前已经介绍的变量分析:①相关分析:一个连续变量与一个连续变量间的关系。②双样本t检验:一个二分分类变量与一个连续变量间的关系。③方差分析:一个多分类分类变量与一个连续变量间的关系。本次介绍:卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。卡方检验并不能展现出两个分类变量相关性的强弱,只能展
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- python可以构建sem模型_结构方程模型(SEM)可用于微生态研究及R语言实现
weixin_39650139
python可以构建sem模型
导读结构方程模型(StructuralEquationModeling,SEM)是一种能基于变量之间的协方差矩阵分析多变量之间结构关系的多元统计分析方法,也被称为协方差结构模型。该方法是因子分析和多元回归分析的结合,可用于分析被测变量与潜在变量之间的结构关系,替代多重回归、通径分析、因子分析、协方差分析等分析方法。结构方程模型能在一次分析中估计多个相互关联的变量之间的依赖关系而受到研究者的青睐。早
- 面向面试的机器学习知识点(2)——数理统计
小井正在努力中
机器学习人工智能
本期省流版:成为数据分析师,这些数理统计知识必不可少!大样本,小样本的概念协方差、相关系数、独立性之间的区别与联系显著性水平/置信度/置信区间假设检验三种经典分布,和对应的三种检验方式方差分析中心极限定理,大数定理内容很多,创作不易,请多多支持~大样本/小样本大样本:样本量趋于无穷小样本:样本量有限协方差/相关系数/独立性协方差定义:两个变量总体的误差,反映两个变量之间的变化趋势(eg.一个上升,
- D32 正交试验难度大?
孤独的坚果儿
今天是周六也正好总结下这这一段时间学习的方差分析知识。其实正交试验最适合生产使用,通过不同的因素分析,得出最优的条件。再者正交试验并非高大上什么难以理解的试验思路,反而正交试验设计给我们一个清晰的思路,用最少的试验设计得出最优的条件。只要是对生产或者测试熟悉的人员都可以采用该项测试。而且他们只要考虑好因素,就可以采用经验进行实验设计。最好是重复测试,可以考虑其检测的精密度。为什么较少的人使用正交呢
- 多个总体均值的比较(多元方差分析)
亦旧sea
均值算法算法
多元方差分析是什么多元方差分析是一种统计方法,用于比较两个或更多组的均值在一个或多个自变量上的差异是否具有统计学意义。它可以同时考虑多个自变量对因变量的影响,以及自变量之间的交互作用。它是广义线性模型的拓展,适用于因变量为连续变量且自变量为分类变量的情况。多元方差分析可以帮助研究者确定各组之间是否存在显著差异,并评估自变量的影响程度。它常用于社会科学、医学研究等领域中。多元方差分析的原理多元方差分
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不