https://www.bilibili.com/video/BV1Ri4y1g7Gg
阴影效果不是怎么好。
使用的是现代OpenGL。
主要思路是首先递归(已改为迭代)生成每个正方体的偏移位置,保存到数组里面。总共迭代了5次,产生了3200000个正方体(每次正方体*20,再迭代一次的话,GPU渲染跟不上)。
然后根据OpenGL多实例渲染的特性,传入刚刚生成的偏移位置到顶点着色器(当然这些数据在代码渲染循环前已经设置为VBO传入到显存了,所以应该是着色器从显存里取)。通过在顶点着色器里面构造平移矩阵,在绘制正方体之前都平移到相应位置。
然后就是光照了,这里用的冯氏光照模型(着色处理在片段着色器)。最终产生该效果。
最后,talk is cheap, show me the code,我将代码都给出了,然后在关键地方添加了注释!
欢迎大家批判指正,如果有任何优化的地方都欢迎指出!
#include
#include
#include
#define GLEW_STATIC
#include
#include
#include
#include
#include
#include "Shader.h"
#include "Camera.h"
bool stop = true; // 空格键 控制是否旋转
const GLfloat sizeCube = 0.1f; // 正方体大小
const int pos[] = { // 20个位置,表示一个谢尔宾斯基(Sierpinski)地毯
0, 0, 0,
0, 1, 0,
0, 2, 0,
1, 0, 0,
2, 0, 0,
1, 2, 0,
2, 1, 0,
2, 2, 0,
0, 0, 1,
0, 2, 1,
2, 0, 1,
2, 2, 1,
0, 0, 2,
0, 1, 2,
0, 2, 2,
1, 0, 2,
2, 0, 2,
1, 2, 2,
2, 1, 2,
2, 2, 2
};
GLfloat vertices[] = {
// 正方体局部坐标 法向量(用于光照)
-sizeCube, -sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
sizeCube, -sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
sizeCube, sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
sizeCube, sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
-sizeCube, sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
-sizeCube, -sizeCube, -sizeCube, 0.0f, 0.0f, -1.0f,
-sizeCube, -sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
sizeCube, -sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
sizeCube, sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
sizeCube, sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
-sizeCube, sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
-sizeCube, -sizeCube, sizeCube, 0.0f, 0.0f, 1.0f,
-sizeCube, sizeCube, sizeCube, -1.0f, 0.0f, 0.0f,
-sizeCube, sizeCube, -sizeCube, -1.0f, 0.0f, 0.0f,
-sizeCube, -sizeCube, -sizeCube, -1.0f, 0.0f, 0.0f,
-sizeCube, -sizeCube, -sizeCube, -1.0f, 0.0f, 0.0f,
-sizeCube, -sizeCube, sizeCube, -1.0f, 0.0f, 0.0f,
-sizeCube, sizeCube, sizeCube, -1.0f, 0.0f, 0.0f,
sizeCube, sizeCube, sizeCube, 1.0f, 0.0f, 0.0f,
sizeCube, sizeCube, -sizeCube, 1.0f, 0.0f, 0.0f,
sizeCube, -sizeCube, -sizeCube, 1.0f, 0.0f, 0.0f,
sizeCube, -sizeCube, -sizeCube, 1.0f, 0.0f, 0.0f,
sizeCube, -sizeCube, sizeCube, 1.0f, 0.0f, 0.0f,
sizeCube, sizeCube, sizeCube, 1.0f, 0.0f, 0.0f,
-sizeCube, -sizeCube, -sizeCube, 0.0f, -1.0f, 0.0f,
sizeCube, -sizeCube, -sizeCube, 0.0f, -1.0f, 0.0f,
sizeCube, -sizeCube, sizeCube, 0.0f, -1.0f, 0.0f,
sizeCube, -sizeCube, sizeCube, 0.0f, -1.0f, 0.0f,
-sizeCube, -sizeCube, sizeCube, 0.0f, -1.0f, 0.0f,
-sizeCube, -sizeCube, -sizeCube, 0.0f, -1.0f, 0.0f,
-sizeCube, sizeCube, -sizeCube, 0.0f, 1.0f, 0.0f,
sizeCube, sizeCube, -sizeCube, 0.0f, 1.0f, 0.0f,
sizeCube, sizeCube, sizeCube, 0.0f, 1.0f, 0.0f,
sizeCube, sizeCube, sizeCube, 0.0f, 1.0f, 0.0f,
-sizeCube, sizeCube, sizeCube, 0.0f, 1.0f, 0.0f,
-sizeCube, sizeCube, -sizeCube, 0.0f, 1.0f, 0.0f
};
/**
* 把递归改成了迭代,step表示当前步数,k表示目标步数
*/
void func(std::vector<GLfloat>& vec, int step, int k) {
while (step < k) {
int stepLen = pow(3, step);
std::vector<GLfloat> temp = vec;
int len = temp.size() / 3;
for (int i = 1; i < 20; i++) {
int alphaX = pos[i * 3] * stepLen;
int alphaY = pos[i * 3 + 1] * stepLen;
int alphaZ = pos[i * 3 + 2] * stepLen;
for (int j = 0; j < len; j++) {
vec.push_back(temp[j * 3] + alphaX);
vec.push_back(temp[j * 3 + 1] + alphaY);
vec.push_back(temp[j * 3 + 2] + alphaZ);
}
}
step++;
}
}
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();
// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;
// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
bool keys[1024];
glm::vec3 lightPos;
// Deltatime
GLfloat deltaTime = 0.0f; // Time between current frame and last frame
GLfloat lastFrame = 0.0f; // Time of last frame
int main() {
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
// 全屏
/*bool isFullScreen = true;
GLFWmonitor* pMonitor = isFullScreen ? glfwGetPrimaryMonitor() : NULL;
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", pMonitor, nullptr);*/
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
glfwMakeContextCurrent(window);
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// GLFW Options
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
glewExperimental = GL_TRUE;
glewInit();
// Define the viewport dimensions
glViewport(0, 0, WIDTH, HEIGHT);
// OpenGL options
glEnable(GL_DEPTH_TEST);
// 未开启面剔除、好像会影响渲染效果
Shader lightingShader("lighting.vs", "lighting.frag"); // 正方体的着色器
Shader lampShader("lamp.vs", "lamp.frag"); // 中心灯的着色器
const int k = 5; // 迭代次数
std::vector<GLfloat> vec(pos, pos + sizeof(pos) / sizeof(float)); // 初始赋值为pos
vec.reserve(3 * pow(20, k)); // 提前计算并分配好空间
func(vec, 1, k);
for (auto& item : vec) item *= sizeCube * 2; // 每一项移动为正方体边长比例
lightPos.x = lightPos.y = lightPos.z = pow(3, k) * sizeCube; // 光源位置初始化为中央
GLuint amount = vec.size() / 3; // 正方体个数
//std::cout << amount;
// containerVAO 正方体VAO,使用一个顶点坐标和方向量的VBO和一个表示正方体偏移的instanceVBO
GLuint VBO, instanceVBO, containerVAO;
glGenVertexArrays(1, &containerVAO);
glBindVertexArray(containerVAO);
{
glGenBuffers(1, &VBO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Position attribute
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
// Normal attribute
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glGenBuffers(1, &instanceVBO);
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);
glBufferData(GL_ARRAY_BUFFER, vec.size() * sizeof(float), &vec[0], GL_STATIC_DRAW);
// 偏移(用于绘制多个正方体)
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(3);
glVertexAttribDivisor(3, 1); // 第一个参数2表示layout索引,第二个参数指定顶点属性的更新方式
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
glBindVertexArray(0);
// lightVAO 中心光源VAO, 同containerVAO共用VBO
GLuint lightVAO;
glGenVertexArrays(1, &lightVAO);
glBindVertexArray(lightVAO);
{
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
}
glBindVertexArray(0);
while (!glfwWindowShouldClose(window)) {
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
glfwPollEvents();
do_movement();
// Clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Use cooresponding shader when setting uniforms/drawing objects
lightingShader.Use();
GLint objectColorLoc = glGetUniformLocation(lightingShader.Program, "objectColor");
GLint lightColorLoc = glGetUniformLocation(lightingShader.Program, "lightColor");
GLint lightPosLoc = glGetUniformLocation(lightingShader.Program, "lightPos");
GLint viewPosLoc = glGetUniformLocation(lightingShader.Program, "viewPos");
glUniform3f(objectColorLoc, 0.75f, 0.75f, 0.75f);
glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);
glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);
// Create camera transformations
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
glm::mat4 model = glm::mat4(); // 让正方体旋转
static float angle = 0;
if (!stop) angle += 0.1f;
model = glm::rotate(model, angle, glm::vec3(1, 1, 1));
// Get the uniform locations
GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model");
GLint viewLoc = glGetUniformLocation(lightingShader.Program, "view");
GLint projLoc = glGetUniformLocation(lightingShader.Program, "projection");
// Pass the matrices to the shader
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// Draw the container (using container's vertex attributes)
glBindVertexArray(containerVAO);
glDrawArraysInstanced(GL_TRIANGLES, 0, 36, amount);
glBindVertexArray(0);
// Also draw the lamp object, again binding the appropriate shader
lampShader.Use();
model = glm::mat4();
model = glm::translate(model, glm::vec3(lightPos.x, lightPos.y, lightPos.z)); // 光源移动到中心
// Get location objects for the matrices on the lamp shader (these could be different on a different shader)
modelLoc = glGetUniformLocation(lampShader.Program, "model");
viewLoc = glGetUniformLocation(lampShader.Program, "view");
projLoc = glGetUniformLocation(lampShader.Program, "projection");
// Set matrices
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
// Draw the light object (using light's vertex attributes)
glBindVertexArray(lightVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
// Swap the screen buffers
glfwSwapBuffers(window);
}
// Terminate GLFW, clearing any resources allocated by GLFW.
glfwTerminate();
return 0;
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode) {
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key < 1024) {
if (action == GLFW_PRESS) {
keys[key] = true;
if (key == GLFW_KEY_SPACE)
stop = !stop;
}
else if (action == GLFW_RELEASE)
keys[key] = false;
}
}
void do_movement() {
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
bool firstMouse = true;
void mouse_callback(GLFWwindow* window, double xpos, double ypos) {
if (firstMouse) {
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos; // Reversed since y-coordinates go from bottom to left
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
camera.ProcessMouseScroll(yoffset);
}
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 3) in vec3 pos; // 正方体偏移
out vec3 Normal;
out vec3 FragPos;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
mat4 instanceMatrix = mat4( // 平移矩阵的构造
1.0, 0, 0, 0,
0, 1.0, 0, 0,
0, 0, 1.0, 0,
pos.x, pos.y, pos.z, 1.0
);
gl_Position = projection * view * model * instanceMatrix * vec4(position, 1.0f); // 先平移到指定位置,再进行视图变换
FragPos = vec3(model * instanceMatrix * vec4(position, 1.0f)); // 需要顶点位置属性乘以模型矩阵(Model Matrix,只用模型矩阵不需要用观察和投影矩阵)来把它变换到世界空间坐标
Normal = mat3(transpose(inverse(model * instanceMatrix))) * normal; // 修复不等比缩放,正规矩阵被定义为“模型矩阵左上角的逆矩阵的转置矩阵”
}
#version 330 core
out vec4 color;
in vec3 Normal;
in vec3 FragPos;
uniform vec3 lightPos;
uniform vec3 viewPos;
uniform vec3 lightColor;
uniform vec3 objectColor;
void main()
{
// Ambient
float ambientStrength = 0.1f;
vec3 ambient = ambientStrength * lightColor;
// Diffuse
vec3 norm = normalize(Normal); // 保证自身为单位向量
vec3 lightDir = normalize(lightPos - FragPos);
float diff = max(dot(norm, lightDir), 0.0); // dot 点乘 为0表示垂直,a1b1+a2b2 第一个向量投影到第二个向量上
vec3 diffuse = diff * lightColor;
// Specular
float specularStrength = 0.5f; // 镜面强度(Specular Intensity)变量specularStrength,给镜面高光一个中等亮度颜色,这样就不会产生过度的影响了。
vec3 viewDir = normalize(viewPos - FragPos);
vec3 reflectDir = reflect(-lightDir, norm); // norm 标准化的法向量
float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); // 32是高光的发光值(Shininess)。一个物体的发光值越高,反射光的能力越强,散射得越少,高光点越小。
vec3 specular = specularStrength * spec * lightColor;
vec3 result = (ambient + diffuse + specular) * objectColor; // 冯氏光照模型
color = vec4(result, 1.0f);
}
#version 330 core
layout (location = 0) in vec3 position;
uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f);
}
#version 330 core
out vec4 color;
void main()
{
color = vec4(1.0f); //设置四维向量的所有元素为 1.0f
}
#ifndef SHADER_H
#define SHADER_H
#include
#include
#include
#include
#include
class Shader {
public:
GLuint Program;
// Constructor generates the shader on the fly
Shader(const GLchar* vertexPath, const GLchar* fragmentPath) {
// 1. Retrieve the vertex/fragment source code from filePath
std::string vertexCode;
std::string fragmentCode;
std::ifstream vShaderFile;
std::ifstream fShaderFile;
// ensures ifstream objects can throw exceptions:
vShaderFile.exceptions(std::ifstream::badbit);
fShaderFile.exceptions(std::ifstream::badbit);
try {
// Open files
vShaderFile.open(vertexPath);
fShaderFile.open(fragmentPath);
std::stringstream vShaderStream, fShaderStream;
// Read file's buffer contents into streams
vShaderStream << vShaderFile.rdbuf();
fShaderStream << fShaderFile.rdbuf();
// close file handlers
vShaderFile.close();
fShaderFile.close();
// Convert stream into string
vertexCode = vShaderStream.str();
fragmentCode = fShaderStream.str();
}
catch (std::ifstream::failure e) {
std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
}
const GLchar* vShaderCode = vertexCode.c_str();
const GLchar* fShaderCode = fragmentCode.c_str();
// 2. Compile shaders
GLuint vertex, fragment;
GLint success;
GLchar infoLog[512];
// Vertex Shader
vertex = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex, 1, &vShaderCode, NULL);
glCompileShader(vertex);
// Print compile errors if any
glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(vertex, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
}
// Fragment Shader
fragment = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment, 1, &fShaderCode, NULL);
glCompileShader(fragment);
// Print compile errors if any
glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
if (!success) {
glGetShaderInfoLog(fragment, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
}
// Shader Program
this->Program = glCreateProgram();
glAttachShader(this->Program, vertex);
glAttachShader(this->Program, fragment);
glLinkProgram(this->Program);
// Print linking errors if any
glGetProgramiv(this->Program, GL_LINK_STATUS, &success);
if (!success) {
glGetProgramInfoLog(this->Program, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
}
// Delete the shaders as they're linked into our program now and no longer necessery
glDeleteShader(vertex);
glDeleteShader(fragment);
}
// Uses the current shader
void Use() {
glUseProgram(this->Program);
}
};
#endif
#ifndef CAMERA_H
#define CAMERA_H
#include
#include
#include
// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum Camera_Movement {
FORWARD,
BACKWARD,
LEFT,
RIGHT
};
// Default camera values
const float YAW = -90.0f;
const float PITCH = 0.0f;
const float SPEED = 5;
const float SENSITIVITY = 0.1f;
const float ZOOM = 45.0f;
// An abstract camera class that processes input and calculates the corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera
{
public:
// Camera Attributes
glm::vec3 Position;
glm::vec3 Front;
glm::vec3 Up;
glm::vec3 Right;
glm::vec3 WorldUp;
// Euler Angles
float Yaw;
float Pitch;
// Camera options
float MovementSpeed;
float MouseSensitivity;
float Zoom;
// Constructor with vectors
Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
{
Position = position;
WorldUp = up;
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();
}
// Constructor with scalar values
Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
{
Position = glm::vec3(posX, posY, posZ);
WorldUp = glm::vec3(upX, upY, upZ);
Yaw = yaw;
Pitch = pitch;
updateCameraVectors();
}
// Returns the view matrix calculated using Euler Angles and the LookAt Matrix
glm::mat4 GetViewMatrix()
{
return glm::lookAt(Position, Position + Front, Up);
}
// Processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
void ProcessKeyboard(Camera_Movement direction, float deltaTime)
{
float velocity = MovementSpeed * deltaTime;
if (direction == FORWARD)
Position += Front * velocity;
if (direction == BACKWARD)
Position -= Front * velocity;
if (direction == LEFT)
Position -= Right * velocity;
if (direction == RIGHT)
Position += Right * velocity;
}
// Processes input received from a mouse input system. Expects the offset value in both the x and y direction.
void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
{
xoffset *= MouseSensitivity;
yoffset *= MouseSensitivity;
Yaw += xoffset;
Pitch += yoffset;
// Make sure that when pitch is out of bounds, screen doesn't get flipped
if (constrainPitch)
{
if (Pitch > 89.0f)
Pitch = 89.0f;
if (Pitch < -89.0f)
Pitch = -89.0f;
}
// Update Front, Right and Up Vectors using the updated Euler angles
updateCameraVectors();
}
// Processes input received from a mouse scroll-wheel event. Only requires input on the vertical wheel-axis
void ProcessMouseScroll(float yoffset)
{
if (Zoom >= 1.0f && Zoom <= 45.0f)
Zoom -= yoffset;
if (Zoom <= 1.0f)
Zoom = 1.0f;
if (Zoom >= 45.0f)
Zoom = 45.0f;
}
private:
// Calculates the front vector from the Camera's (updated) Euler Angles
void updateCameraVectors()
{
// Calculate the new Front vector
glm::vec3 front;
front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
front.y = sin(glm::radians(Pitch));
front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
Front = glm::normalize(front);
// Also re-calculate the Right and Up vector
Right = glm::normalize(glm::cross(Front, WorldUp)); // Normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
Up = glm::normalize(glm::cross(Right, Front));
}
};
#endif