【OpenGL】谢尔宾斯基(Sierpinski)地毯 OpenGL分形(七)

文章目录

  • 效果展示
  • 原理简介
    • 大致流程:
    • 关键点:
  • 最终代码
    • 主函数代码
    • 着色器代码
    • 包含头文件

效果展示

https://www.bilibili.com/video/BV1Ri4y1g7Gg

阴影效果不是怎么好。

原理简介

大致流程:

使用的是现代OpenGL。

主要思路是首先递归(已改为迭代)生成每个正方体的偏移位置,保存到数组里面。总共迭代了5次,产生了3200000个正方体(每次正方体*20,再迭代一次的话,GPU渲染跟不上)。

然后根据OpenGL多实例渲染的特性,传入刚刚生成的偏移位置到顶点着色器(当然这些数据在代码渲染循环前已经设置为VBO传入到显存了,所以应该是着色器从显存里取)。通过在顶点着色器里面构造平移矩阵,在绘制正方体之前都平移到相应位置。

然后就是光照了,这里用的冯氏光照模型(着色处理在片段着色器)。最终产生该效果。

关键点:

  • 内存解决: 因为VS x86运行最多给2G内存,然后迭代6次的话光存储偏移就用了接近1G的内存,所以并没有在主函数里面计算好模型矩阵后传入,而是直接传入正方体的偏移位置在着色器里面构造平移矩阵。但是这样虽然内存可以支持6次迭代,但是我的GTX1050渲染跟不上。
  • 这里产生谢尔宾斯基(Sierpinski)地毯的迭代方法是将一个基本的谢尔宾斯基(Sierpinski)地毯分解为20个正方体(下面一层和上面一层各8个,中间一层4个),即每增加一次迭代都将上一次的谢尔宾斯基(Sierpinski)地毯构造20个。

最后,talk is cheap, show me the code,我将代码都给出了,然后在关键地方添加了注释!

欢迎大家批判指正,如果有任何优化的地方都欢迎指出!

最终代码

主函数代码

  • main.cpp
#include 
#include 
#include 

#define GLEW_STATIC

#include 
#include 
#include 
#include 
#include 
#include "Shader.h"
#include "Camera.h"

bool stop = true; // 空格键 控制是否旋转
const GLfloat sizeCube = 0.1f; // 正方体大小
const int pos[] = { // 20个位置,表示一个谢尔宾斯基(Sierpinski)地毯
		0, 0, 0,
		0, 1, 0,
		0, 2, 0,
		1, 0, 0,
		2, 0, 0,
		1, 2, 0,
		2, 1, 0,
		2, 2, 0,

		0, 0, 1,
		0, 2, 1,
		2, 0, 1,
		2, 2, 1,

		0, 0, 2,
		0, 1, 2,
		0, 2, 2,
		1, 0, 2,
		2, 0, 2,
		1, 2, 2,
		2, 1, 2,
		2, 2, 2
};
GLfloat vertices[] = {
	// 正方体局部坐标					法向量(用于光照)
	-sizeCube, -sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,
	 sizeCube, -sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,
	 sizeCube,  sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,
	 sizeCube,  sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,
	-sizeCube,  sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,
	-sizeCube, -sizeCube, -sizeCube,  0.0f,  0.0f, -1.0f,

	-sizeCube, -sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,
	 sizeCube, -sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,
	 sizeCube,  sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,
	 sizeCube,  sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,
	-sizeCube,  sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,
	-sizeCube, -sizeCube,  sizeCube,  0.0f,  0.0f,  1.0f,

	-sizeCube,  sizeCube,  sizeCube, -1.0f,  0.0f,  0.0f,
	-sizeCube,  sizeCube, -sizeCube, -1.0f,  0.0f,  0.0f,
	-sizeCube, -sizeCube, -sizeCube, -1.0f,  0.0f,  0.0f,
	-sizeCube, -sizeCube, -sizeCube, -1.0f,  0.0f,  0.0f,
	-sizeCube, -sizeCube,  sizeCube, -1.0f,  0.0f,  0.0f,
	-sizeCube,  sizeCube,  sizeCube, -1.0f,  0.0f,  0.0f,

	 sizeCube,  sizeCube,  sizeCube,  1.0f,  0.0f,  0.0f,
	 sizeCube,  sizeCube, -sizeCube,  1.0f,  0.0f,  0.0f,
	 sizeCube, -sizeCube, -sizeCube,  1.0f,  0.0f,  0.0f,
	 sizeCube, -sizeCube, -sizeCube,  1.0f,  0.0f,  0.0f,
	 sizeCube, -sizeCube,  sizeCube,  1.0f,  0.0f,  0.0f,
	 sizeCube,  sizeCube,  sizeCube,  1.0f,  0.0f,  0.0f,

	-sizeCube, -sizeCube, -sizeCube,  0.0f, -1.0f,  0.0f,
	 sizeCube, -sizeCube, -sizeCube,  0.0f, -1.0f,  0.0f,
	 sizeCube, -sizeCube,  sizeCube,  0.0f, -1.0f,  0.0f,
	 sizeCube, -sizeCube,  sizeCube,  0.0f, -1.0f,  0.0f,
	-sizeCube, -sizeCube,  sizeCube,  0.0f, -1.0f,  0.0f,
	-sizeCube, -sizeCube, -sizeCube,  0.0f, -1.0f,  0.0f,

	-sizeCube,  sizeCube, -sizeCube,  0.0f,  1.0f,  0.0f,
	 sizeCube,  sizeCube, -sizeCube,  0.0f,  1.0f,  0.0f,
	 sizeCube,  sizeCube,  sizeCube,  0.0f,  1.0f,  0.0f,
	 sizeCube,  sizeCube,  sizeCube,  0.0f,  1.0f,  0.0f,
	-sizeCube,  sizeCube,  sizeCube,  0.0f,  1.0f,  0.0f,
	-sizeCube,  sizeCube, -sizeCube,  0.0f,  1.0f,  0.0f
};

/**
 * 把递归改成了迭代,step表示当前步数,k表示目标步数
*/
void func(std::vector<GLfloat>& vec, int step, int k) {
	while (step < k) {
		int stepLen = pow(3, step);
		std::vector<GLfloat> temp = vec;
		int len = temp.size() / 3;
		for (int i = 1; i < 20; i++) {
			int alphaX = pos[i * 3] * stepLen;
			int alphaY = pos[i * 3 + 1] * stepLen;
			int alphaZ = pos[i * 3 + 2] * stepLen;
			for (int j = 0; j < len; j++) {
				vec.push_back(temp[j * 3] + alphaX);
				vec.push_back(temp[j * 3 + 1] + alphaY);
				vec.push_back(temp[j * 3 + 2] + alphaZ);
			}
		}
		step++;
	}
}

void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();

// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 600;

// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX = WIDTH / 2.0;
GLfloat lastY = HEIGHT / 2.0;
bool keys[1024];

glm::vec3 lightPos;

// Deltatime
GLfloat deltaTime = 0.0f;    // Time between current frame and last frame
GLfloat lastFrame = 0.0f;    // Time of last frame

int main() {
	glfwInit();
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
	glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

	// 全屏
	/*bool isFullScreen = true;
	GLFWmonitor* pMonitor = isFullScreen ? glfwGetPrimaryMonitor() : NULL;
	GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", pMonitor, nullptr);*/

	GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "LearnOpenGL", nullptr, nullptr);
	glfwMakeContextCurrent(window);

	glfwSetKeyCallback(window, key_callback);
	glfwSetCursorPosCallback(window, mouse_callback);
	glfwSetScrollCallback(window, scroll_callback);

	// GLFW Options
	glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
	glewExperimental = GL_TRUE;
	glewInit();

	// Define the viewport dimensions
	glViewport(0, 0, WIDTH, HEIGHT);

	// OpenGL options
	glEnable(GL_DEPTH_TEST);
	// 未开启面剔除、好像会影响渲染效果

	Shader lightingShader("lighting.vs", "lighting.frag"); // 正方体的着色器
	Shader lampShader("lamp.vs", "lamp.frag"); // 中心灯的着色器

	const int k = 5; // 迭代次数
	std::vector<GLfloat> vec(pos, pos + sizeof(pos) / sizeof(float)); // 初始赋值为pos
	vec.reserve(3 * pow(20, k)); // 提前计算并分配好空间
	func(vec, 1, k);
	for (auto& item : vec) item *= sizeCube * 2; // 每一项移动为正方体边长比例
	lightPos.x = lightPos.y = lightPos.z = pow(3, k) * sizeCube; // 光源位置初始化为中央
	GLuint amount = vec.size() / 3; // 正方体个数
	//std::cout << amount;

	// containerVAO 正方体VAO,使用一个顶点坐标和方向量的VBO和一个表示正方体偏移的instanceVBO
	GLuint VBO, instanceVBO, containerVAO;
	glGenVertexArrays(1, &containerVAO);
	glBindVertexArray(containerVAO);
	{
		glGenBuffers(1, &VBO);
		glBindBuffer(GL_ARRAY_BUFFER, VBO);
		glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
		// Position attribute
		glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
		glEnableVertexAttribArray(0);
		// Normal attribute
		glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
		glEnableVertexAttribArray(1);
		glBindBuffer(GL_ARRAY_BUFFER, 0);

		glGenBuffers(1, &instanceVBO);
		glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);
		glBufferData(GL_ARRAY_BUFFER, vec.size() * sizeof(float), &vec[0], GL_STATIC_DRAW);
		// 偏移(用于绘制多个正方体)
		glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(GLfloat), (GLvoid*)0);
		glEnableVertexAttribArray(3);
		glVertexAttribDivisor(3, 1); // 第一个参数2表示layout索引,第二个参数指定顶点属性的更新方式
		glBindBuffer(GL_ARRAY_BUFFER, 0);
	}
	glBindVertexArray(0);

	// lightVAO 中心光源VAO, 同containerVAO共用VBO
	GLuint lightVAO;
	glGenVertexArrays(1, &lightVAO);
	glBindVertexArray(lightVAO);
	{
		glBindBuffer(GL_ARRAY_BUFFER, VBO);
		glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
		glEnableVertexAttribArray(0);
		glBindBuffer(GL_ARRAY_BUFFER, 0);
	}
	glBindVertexArray(0);

	while (!glfwWindowShouldClose(window)) {
		GLfloat currentFrame = glfwGetTime();
		deltaTime = currentFrame - lastFrame;
		lastFrame = currentFrame;

		glfwPollEvents();
		do_movement();

		// Clear the colorbuffer
		glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

		// Use cooresponding shader when setting uniforms/drawing objects
		lightingShader.Use();
		GLint objectColorLoc = glGetUniformLocation(lightingShader.Program, "objectColor");
		GLint lightColorLoc = glGetUniformLocation(lightingShader.Program, "lightColor");
		GLint lightPosLoc = glGetUniformLocation(lightingShader.Program, "lightPos");
		GLint viewPosLoc = glGetUniformLocation(lightingShader.Program, "viewPos");
		glUniform3f(objectColorLoc, 0.75f, 0.75f, 0.75f);
		glUniform3f(lightColorLoc, 1.0f, 1.0f, 1.0f);
		glUniform3f(lightPosLoc, lightPos.x, lightPos.y, lightPos.z);
		glUniform3f(viewPosLoc, camera.Position.x, camera.Position.y, camera.Position.z);

		// Create camera transformations
		glm::mat4 view = camera.GetViewMatrix();
		glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
		glm::mat4 model = glm::mat4(); // 让正方体旋转
		static float angle = 0;
		if (!stop) angle += 0.1f;
		model = glm::rotate(model, angle, glm::vec3(1, 1, 1));
		// Get the uniform locations
		GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model");
		GLint viewLoc = glGetUniformLocation(lightingShader.Program, "view");
		GLint projLoc = glGetUniformLocation(lightingShader.Program, "projection");
		// Pass the matrices to the shader
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		// Draw the container (using container's vertex attributes)
		glBindVertexArray(containerVAO);
		glDrawArraysInstanced(GL_TRIANGLES, 0, 36, amount);
		glBindVertexArray(0);

		// Also draw the lamp object, again binding the appropriate shader
		lampShader.Use();
		model = glm::mat4();
		model = glm::translate(model, glm::vec3(lightPos.x, lightPos.y, lightPos.z)); // 光源移动到中心
		// Get location objects for the matrices on the lamp shader (these could be different on a different shader)
		modelLoc = glGetUniformLocation(lampShader.Program, "model");
		viewLoc = glGetUniformLocation(lampShader.Program, "view");
		projLoc = glGetUniformLocation(lampShader.Program, "projection");
		// Set matrices
		glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
		glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));
		glUniformMatrix4fv(modelLoc, 1, GL_FALSE, glm::value_ptr(model));
		// Draw the light object (using light's vertex attributes)
		glBindVertexArray(lightVAO);
		glDrawArrays(GL_TRIANGLES, 0, 36);
		glBindVertexArray(0);

		// Swap the screen buffers
		glfwSwapBuffers(window);
	}

	// Terminate GLFW, clearing any resources allocated by GLFW.
	glfwTerminate();
	return 0;
}

// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode) {
	if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
		glfwSetWindowShouldClose(window, GL_TRUE);
	if (key >= 0 && key < 1024) {
		if (action == GLFW_PRESS) {
			keys[key] = true;
			if (key == GLFW_KEY_SPACE)
				stop = !stop;
		}
		else if (action == GLFW_RELEASE)
			keys[key] = false;
	}
}

void do_movement() {
	// Camera controls
	if (keys[GLFW_KEY_W])
		camera.ProcessKeyboard(FORWARD, deltaTime);
	if (keys[GLFW_KEY_S])
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	if (keys[GLFW_KEY_A])
		camera.ProcessKeyboard(LEFT, deltaTime);
	if (keys[GLFW_KEY_D])
		camera.ProcessKeyboard(RIGHT, deltaTime);
}

bool firstMouse = true;

void mouse_callback(GLFWwindow* window, double xpos, double ypos) {
	if (firstMouse) {
		lastX = xpos;
		lastY = ypos;
		firstMouse = false;
	}

	GLfloat xoffset = xpos - lastX;
	GLfloat yoffset = lastY - ypos;  // Reversed since y-coordinates go from bottom to left

	lastX = xpos;
	lastY = ypos;

	camera.ProcessMouseMovement(xoffset, yoffset);
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset) {
	camera.ProcessMouseScroll(yoffset);
}

着色器代码

  • lighting.vs
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 1) in vec3 normal;
layout (location = 3) in vec3 pos; // 正方体偏移

out vec3 Normal;
out vec3 FragPos;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    mat4 instanceMatrix = mat4( // 平移矩阵的构造
            1.0, 0, 0, 0,
            0, 1.0, 0, 0,
            0, 0, 1.0, 0,
            pos.x, pos.y, pos.z, 1.0
    );

    gl_Position = projection * view * model * instanceMatrix * vec4(position, 1.0f); // 先平移到指定位置,再进行视图变换
    FragPos = vec3(model * instanceMatrix * vec4(position, 1.0f)); // 需要顶点位置属性乘以模型矩阵(Model Matrix,只用模型矩阵不需要用观察和投影矩阵)来把它变换到世界空间坐标
    Normal = mat3(transpose(inverse(model * instanceMatrix))) * normal;  // 修复不等比缩放,正规矩阵被定义为“模型矩阵左上角的逆矩阵的转置矩阵”
}
  • lighting.frag
#version 330 core
out vec4 color;
  
in vec3 Normal;  
in vec3 FragPos;  

uniform vec3 lightPos; 
uniform vec3 viewPos;
uniform vec3 lightColor;
uniform vec3 objectColor;

void main()
{
    // Ambient
    float ambientStrength = 0.1f;
    vec3 ambient = ambientStrength * lightColor;

    // Diffuse 
    vec3 norm = normalize(Normal); // 保证自身为单位向量
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0); // dot 点乘 为0表示垂直,a1b1+a2b2 第一个向量投影到第二个向量上
    vec3 diffuse = diff * lightColor;
    
    // Specular
    float specularStrength = 0.5f; // 镜面强度(Specular Intensity)变量specularStrength,给镜面高光一个中等亮度颜色,这样就不会产生过度的影响了。
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  // norm 标准化的法向量
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), 32); // 32是高光的发光值(Shininess)。一个物体的发光值越高,反射光的能力越强,散射得越少,高光点越小。
    vec3 specular = specularStrength * spec * lightColor;
    
    vec3 result = (ambient + diffuse + specular) *  objectColor; // 冯氏光照模型
    color = vec4(result, 1.0f);
} 
  • lamp.vs
#version 330 core
layout (location = 0) in vec3 position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    gl_Position = projection * view * model * vec4(position, 1.0f);
}
  • lamp.frag
#version 330 core
out vec4 color;

void main()
{
    color = vec4(1.0f); //设置四维向量的所有元素为 1.0f
}

包含头文件

  • Shader.h
#ifndef SHADER_H
#define SHADER_H

#include 
#include 
#include 
#include 

#include 

class Shader {
public:
    GLuint Program;

    // Constructor generates the shader on the fly
    Shader(const GLchar* vertexPath, const GLchar* fragmentPath) {
        // 1. Retrieve the vertex/fragment source code from filePath
        std::string vertexCode;
        std::string fragmentCode;
        std::ifstream vShaderFile;
        std::ifstream fShaderFile;
        // ensures ifstream objects can throw exceptions:
        vShaderFile.exceptions(std::ifstream::badbit);
        fShaderFile.exceptions(std::ifstream::badbit);
        try {
            // Open files
            vShaderFile.open(vertexPath);
            fShaderFile.open(fragmentPath);
            std::stringstream vShaderStream, fShaderStream;
            // Read file's buffer contents into streams
            vShaderStream << vShaderFile.rdbuf();
            fShaderStream << fShaderFile.rdbuf();
            // close file handlers
            vShaderFile.close();
            fShaderFile.close();
            // Convert stream into string
            vertexCode = vShaderStream.str();
            fragmentCode = fShaderStream.str();
        }
        catch (std::ifstream::failure e) {
            std::cout << "ERROR::SHADER::FILE_NOT_SUCCESFULLY_READ" << std::endl;
        }
        const GLchar* vShaderCode = vertexCode.c_str();
        const GLchar* fShaderCode = fragmentCode.c_str();
        // 2. Compile shaders
        GLuint vertex, fragment;
        GLint success;
        GLchar infoLog[512];
        // Vertex Shader
        vertex = glCreateShader(GL_VERTEX_SHADER);
        glShaderSource(vertex, 1, &vShaderCode, NULL);
        glCompileShader(vertex);
        // Print compile errors if any
        glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
        if (!success) {
            glGetShaderInfoLog(vertex, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
        }
        // Fragment Shader
        fragment = glCreateShader(GL_FRAGMENT_SHADER);
        glShaderSource(fragment, 1, &fShaderCode, NULL);
        glCompileShader(fragment);
        // Print compile errors if any
        glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
        if (!success) {
            glGetShaderInfoLog(fragment, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
        }
        // Shader Program
        this->Program = glCreateProgram();
        glAttachShader(this->Program, vertex);
        glAttachShader(this->Program, fragment);
        glLinkProgram(this->Program);
        // Print linking errors if any
        glGetProgramiv(this->Program, GL_LINK_STATUS, &success);
        if (!success) {
            glGetProgramInfoLog(this->Program, 512, NULL, infoLog);
            std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
        }
        // Delete the shaders as they're linked into our program now and no longer necessery
        glDeleteShader(vertex);
        glDeleteShader(fragment);

    }

    // Uses the current shader
    void Use() {
        glUseProgram(this->Program);
    }
};

#endif
  • Camera.h
#ifndef CAMERA_H
#define CAMERA_H

#include 
#include 

#include 
// Defines several possible options for camera movement. Used as abstraction to stay away from window-system specific input methods
enum Camera_Movement {
    FORWARD,
    BACKWARD,
    LEFT,
    RIGHT
};

// Default camera values
const float YAW = -90.0f;
const float PITCH = 0.0f;
const float SPEED = 5;
const float SENSITIVITY = 0.1f;
const float ZOOM = 45.0f;


// An abstract camera class that processes input and calculates the corresponding Euler Angles, Vectors and Matrices for use in OpenGL
class Camera
{
public:
    // Camera Attributes
    glm::vec3 Position;
    glm::vec3 Front;
    glm::vec3 Up;
    glm::vec3 Right;
    glm::vec3 WorldUp;
    // Euler Angles
    float Yaw;
    float Pitch;
    // Camera options
    float MovementSpeed;
    float MouseSensitivity;
    float Zoom;

    // Constructor with vectors
    Camera(glm::vec3 position = glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3 up = glm::vec3(0.0f, 1.0f, 0.0f), float yaw = YAW, float pitch = PITCH) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = position;
        WorldUp = up;
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }
    // Constructor with scalar values
    Camera(float posX, float posY, float posZ, float upX, float upY, float upZ, float yaw, float pitch) : Front(glm::vec3(0.0f, 0.0f, -1.0f)), MovementSpeed(SPEED), MouseSensitivity(SENSITIVITY), Zoom(ZOOM)
    {
        Position = glm::vec3(posX, posY, posZ);
        WorldUp = glm::vec3(upX, upY, upZ);
        Yaw = yaw;
        Pitch = pitch;
        updateCameraVectors();
    }

    // Returns the view matrix calculated using Euler Angles and the LookAt Matrix
    glm::mat4 GetViewMatrix()
    {
        return glm::lookAt(Position, Position + Front, Up);
    }

    // Processes input received from any keyboard-like input system. Accepts input parameter in the form of camera defined ENUM (to abstract it from windowing systems)
    void ProcessKeyboard(Camera_Movement direction, float deltaTime)
    {
        float velocity = MovementSpeed * deltaTime;
        if (direction == FORWARD)
            Position += Front * velocity;
        if (direction == BACKWARD)
            Position -= Front * velocity;
        if (direction == LEFT)
            Position -= Right * velocity;
        if (direction == RIGHT)
            Position += Right * velocity;
    }

    // Processes input received from a mouse input system. Expects the offset value in both the x and y direction.
    void ProcessMouseMovement(float xoffset, float yoffset, GLboolean constrainPitch = true)
    {
        xoffset *= MouseSensitivity;
        yoffset *= MouseSensitivity;

        Yaw += xoffset;
        Pitch += yoffset;

        // Make sure that when pitch is out of bounds, screen doesn't get flipped
        if (constrainPitch)
        {
            if (Pitch > 89.0f)
                Pitch = 89.0f;
            if (Pitch < -89.0f)
                Pitch = -89.0f;
        }

        // Update Front, Right and Up Vectors using the updated Euler angles
        updateCameraVectors();
    }

    // Processes input received from a mouse scroll-wheel event. Only requires input on the vertical wheel-axis
    void ProcessMouseScroll(float yoffset)
    {
        if (Zoom >= 1.0f && Zoom <= 45.0f)
            Zoom -= yoffset;
        if (Zoom <= 1.0f)
            Zoom = 1.0f;
        if (Zoom >= 45.0f)
            Zoom = 45.0f;
    }

private:
    // Calculates the front vector from the Camera's (updated) Euler Angles
    void updateCameraVectors()
    {
        // Calculate the new Front vector
        glm::vec3 front;
        front.x = cos(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        front.y = sin(glm::radians(Pitch));
        front.z = sin(glm::radians(Yaw)) * cos(glm::radians(Pitch));
        Front = glm::normalize(front);
        // Also re-calculate the Right and Up vector
        Right = glm::normalize(glm::cross(Front, WorldUp));  // Normalize the vectors, because their length gets closer to 0 the more you look up or down which results in slower movement.
        Up = glm::normalize(glm::cross(Right, Front));
    }
};
#endif

你可能感兴趣的:(OpenGL,opengl,shader,3d,分形)