水题
强制选根的连通块 d p dp dp
转到 d f s dfs dfs序上转移就只有第一个儿子和出去点,儿子之间相互连一下转移
就变到序列上了,转移也只有 O ( n ) O(n) O(n)个
复杂度 O ( n k ) O(nk) O(nk)
#include
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair
#define fi first
#define se second
#define pb push_back
#define cs const
#define poly vector
#define bg begin
const int mod=998244353,G=3;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline void Add(int &a,int b){a=add(a,b);}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline void Dec(int &a,int b){a=dec(a,b);}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b){int res=1;for(;b;b>>=1,a=mul(a,a))(b&1)?(res=mul(res,a)):0;return res;}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=5003,C=10004;
int f[N][C];
int adj[N],nxt[N<<1],to[N<<1],fa[N],in[N],w[N],v[N],tr2[N],dfn;
int n,p,cnt;
int arr[N],last[N],trans[N];
vector<int>tr1[N];
inline void addedge(int u,int v){
nxt[++cnt]=adj[u],adj[u]=cnt,to[cnt]=v;
}
void dfs(int u){
in[u]=++dfn,arr[dfn]=u;
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
last[u]=v,dfs(v);
}
}
void dfs2(int u){
int pre=0;
for(int e=adj[u];e;e=nxt[e]){
int v=to[e];
if(pre)trans[pre]=v;
else tr2[v]=u;
pre=v,dfs2(v);
}
}
inline void dp(int u){
re int iu=in[u];
for(re int tt=0;tt<tr1[u].size();tt++){
re int v=tr1[u][tt],iv=in[v];
for(re int i=0;i<=p;i++){
if(f[iv][i]!=-1)chemx(f[iu][i],f[iv][i]);
}
}
re int pt=tr2[u],ip=in[pt];
for(re int i=w[pt];i<=p;i++)
if(f[ip][i-w[pt]]!=-1)chemx(f[iu][i],f[ip][i-w[pt]]+v[pt]);
}
int main(){
n=read(),p=read();
for(int i=1;i<=n;i++){
w[i]=read(),fa[i]=read(),v[i]=read();
if(i!=1)addedge(fa[i],i);
}
dfs(1),dfs2(1);
trans[1]=n+1;in[n+1]=n+1,arr[n+1]=n+1;
for(re int i=1;i<=n;i++)trans[last[i]]=trans[i];
for(re int i=2;i<=n;i++)tr1[trans[i]].pb(i);
for(re int i=1;i<=n;i++)if(!adj[i])tr2[trans[i]]=i;
memset(f,-1,sizeof(f));
f[in[1]][0]=0;
for(int i=2;i<=n+1;i++){
dp(arr[i]);
}
int res=0;
for(int i=0;i<=p;i++)chemx(res,f[n+1][i]);
cout<<res;
}
HDU原题
最简单也就是最暴力的做法就是 L C T LCT LCT暴力维护删加边和虚子树信息
然而根本调不出来
R u s h 1.5 h + Rush\ 1.5h+ Rush 1.5h+后弃掉
一个简单的做法是基于左右旋对于中序遍历只会修改2个点
手玩一下可以发现
用线段树暴力维护一下
每次询问仍然是一个区间
线段树维护即可
线段树都不会写了我真是菜到家了
#include
using namespace std;
const int RLEN=1<<20|1;
inline char gc(){
static char ibuf[RLEN],*ib,*ob;
(ob==ib)&&(ob=(ib=ibuf)+fread(ibuf,1,RLEN,stdin));
return (ob==ib)?EOF:*ib++;
}
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define ll long long
#define re register
#define pii pair
#define fi first
#define se second
#define pb push_back
#define cs const
#define poly vector
#define bg begin
const int mod=1e9+7,G=3;
inline int add(int a,int b){return a+b>=mod?a+b-mod:a+b;}
inline void Add(int &a,int b){a=add(a,b);}
inline int dec(int a,int b){return a>=b?a-b:a-b+mod;}
inline void Dec(int &a,int b){a=dec(a,b);}
inline int mul(int a,int b){return 1ll*a*b>=mod?1ll*a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b){int res=1;for(;b;b>>=1,a=mul(a,a))(b&1)?(res=mul(res,a)):0;return res;}
inline void chemx(int &a,int b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
cs int N=200005;
int in[N],out[N],pos[N],dfn,idx[N],fa[N],lc[N],rc[N];
int n,q,val[N],s[N];
inline void tain(int u){
in[u]=out[u]=pos[u];
if(lc[u])chemn(in[u],in[lc[u]]),chemx(out[u],out[lc[u]]);
if(rc[u])chemn(in[u],in[rc[u]]),chemx(out[u],out[rc[u]]);
}
void dfs(int u){
s[u]=val[u];
if(lc[u])dfs(lc[u]),Add(s[u],s[lc[u]]);
in[u]=out[u]=pos[u]=++dfn,idx[dfn]=u;
if(rc[u])dfs(rc[u]),Add(s[u],s[rc[u]]);
tain(u);
}
namespace Seg{
int tr[N<<2];
#define lc (u<<1)
#define rc ((u<<1)|1)
#define mid ((l+r)>>1)
inline void pushup(int u){
tr[u]=mul(tr[lc],tr[rc]);
}
inline void build(int u,int l,int r){
if(l==r){tr[u]=s[idx[l]];return;}
build(lc,l,mid),build(rc,mid+1,r);
pushup(u);
}
inline void insert(int u,int l,int r,int p,int k){
if(l==r){tr[u]=k;return;}
if(p<=mid)insert(lc,l,mid,p,k);
else insert(rc,mid+1,r,p,k);
pushup(u);
}
inline int query(int u,int l,int r,int st,int des){
if(st<=l&&r<=des)return tr[u];
int res=1;
if(st<=mid)Mul(res,query(lc,l,mid,st,des));
if(mid<des)Mul(res,query(rc,mid+1,r,st,des));
return res;
}
#undef lc
#undef rc
#undef mid
}
int main(){
#ifdef Stargazer
freopen("lx.cpp","r",stdin);
#endif
n=read(),q=read();
for(int i=1;i<=n;i++){
val[i]=read(),lc[i]=read(),rc[i]=read();
if(lc[i])fa[lc[i]]=i;
if(rc[i])fa[rc[i]]=i;
}
dfn=0,dfs(1),Seg::build(1,1,n);
while(q--){
int op=read(),x=read(),y;
if(op==0){
if(!lc[x])continue;
y=x,x=lc[y];
Dec(s[y],s[x]),Add(s[y],s[rc[x]]);
Dec(s[x],s[rc[x]]),Add(s[x],s[y]);
Seg::insert(1,1,n,pos[x],s[x]);
Seg::insert(1,1,n,pos[y],s[y]);
if(y==lc[fa[y]])lc[fa[y]]=x;
else rc[fa[y]]=x;
fa[x]=fa[y],fa[y]=x,lc[y]=rc[x],fa[rc[x]]=y;
rc[x]=y;
tain(y),tain(x);
}
else if(op==1){
if(!rc[x])continue;
y=rc[x];
Dec(s[x],s[y]),Add(s[x],s[lc[y]]);
Dec(s[y],s[lc[y]]),Add(s[y],s[x]);
Seg::insert(1,1,n,pos[x],s[x]);
Seg::insert(1,1,n,pos[y],s[y]);
if(x==lc[fa[x]])lc[fa[x]]=y;
else rc[fa[x]]=y;
fa[y]=fa[x],fa[x]=y,rc[x]=lc[y],fa[lc[y]]=x;
lc[y]=x;
tain(x),tain(y);
}
else{
cout<<Seg::query(1,1,n,in[x],out[x])<<'\n';
}
}
}
T o p C o d e r TopCoder TopCoder原题
发现这个走的方法 x , y x,y x,y不会互相影响
f x [ i ] [ j ] fx[i][j] fx[i][j]表示 i i i步 x x x走到 j j j的方案
f y [ i ] [ j ] fy[i][j] fy[i][j]类似
走到 ( x , y ) (x,y) (x,y)可以直接由 f x , f y fx,fy fx,fy乘起来
前缀和优化可以做到 n 3 n^3 n3
考虑容斥掉不合法的方案
g [ i ] [ j ] g[i][j] g[i][j]表示走 i i i步不合法的,走到 ( j , j ) (j,j) (j,j)的方案数
枚举走了几步不合法的
二项式反演可以得到
a n s = ∑ i = 0 n ∑ j = 0 m / 10 f x [ n − i ] [ t x − j ∗ 10 ] ∗ f y [ n − i ] [ t y − j ∗ 10 ] ( n i ) ( − 1 ) i g [ i ] [ j ∗ 10 ] ans=\sum_{i=0}^{n}\sum_{j=0}^{m/10}fx[n-i][tx-j*10]*fy[n-i][ty-j*10]{n\choose i}(-1)^{i}g[i][j*10] ans=∑i=0n∑j=0m/10fx[n−i][tx−j∗10]∗fy[n−i][ty−j∗10](in)(−1)ig[i][j∗10]
#include
using namespace std;
#define gc getchar
inline int read(){
char ch=gc();
int res=0,f=1;
while(!isdigit(ch))f^=ch=='-',ch=gc();
while(isdigit(ch))res=(res+(res<<2)<<1)+(ch^48),ch=gc();
return f?res:-res;
}
#define re register
#define pb push_back
#define cs const
#define pii pair
#define fi first
#define se second
#define ll long long
cs int mod=1e4+7,G=3;
inline int add(int a,int b){return (a+=b)>=mod?a-mod:a;}
inline void Add(int &a,int b){(a+=b)>=mod?(a-=mod):0;}
inline int dec(int a,int b){return (a-=b)<0?a+mod:a;}
inline void Dec(int &a,int b){(a-=b)<0?(a+=mod):0;}
inline int mul(int a,int b){return a*b>=mod?a*b%mod:a*b;}
inline void Mul(int &a,int b){a=mul(a,b);}
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=mul(a,a))(b&1)&&(res=mul(res,a));return res;
}
inline void chemx(ll &a,ll b){a<b?a=b:0;}
inline void chemn(int &a,int b){a>b?a=b:0;}
int tx,ty,mx,my,n,m;
cs int N=805;
int fac[N<<1],ifac[N<<1],fx[N<<1][N],fy[N<<1][N],sx[N<<1][N],sy[N<<1][N],g[N<<1][N],ban[N];
class FoxJumping{
public :
inline void init(){
ifac[0]=fac[0]=1;
for(int i=1;i<N*2;i++)fac[i]=mul(fac[i-1],i);
ifac[N*2-1]=ksm(fac[N*2-1],mod-2);
for(int i=N*2-2;i;i--)ifac[i]=mul(ifac[i+1],i+1);
}
inline int C(int n,int m){
if(n<m)return 0;
return mul(fac[n],mul(ifac[m],ifac[n-m]));
}
inline int getCount(int Tx,int Ty,int Mx,int My,int R,vector<int> bad){
tx=Tx,ty=Ty,mx=Mx,my=My,n=R,m=bad.size();
init();
for(int i=1;i<=m;i++)ban[i]=bad[i-1];
sort(ban+1,ban+m+1),m=unique(ban+1,ban+m+1)-ban-1;
m++;
fx[0][0]=1;
for(int i=0;i<n;i++)
for(int j=0;j<=tx;j++){
sx[i][j]=fx[i][j];
if(j)Add(sx[i][j],sx[i][j-1]);
Add(fx[i+1][j],sx[i][j]);
if(j>mx)Dec(fx[i+1][j],sx[i][j-mx-1]);
}
fy[0][0]=1;
for(int i=0;i<n;i++)
for(int j=0;j<=ty;j++){
sy[i][j]=fy[i][j];
if(j)Add(sy[i][j],sy[i][j-1]);
Add(fy[i+1][j],sy[i][j]);
if(j>my)Dec(fy[i+1][j],sy[i][j-my-1]);
}
g[0][0]=1;
for(int i=0;i<n;i++)
for(int j=0,lim=min(tx,ty)/10;j<=lim;j++){
for(int k=1;k<=m;k++)
if(j+ban[k]/10<=lim)Add(g[i+1][j+ban[k]/10],g[i][j]);
}
int res=0;
for(int i=0;i<=n;i++){
for(int j=0;j<=min(tx,ty)/10;j++){
int now=mul(C(n,i),mul(mul(fx[n-i][tx-j*10],fy[n-i][ty-j*10]),g[i][j]));
if(i&1)Dec(res,now);
else Add(res,now);
}
}
return res;
}
}T;
vector<int> s;
int main(){
int tx=read(),ty=read(),mx=read(),my=read(),r=read(),k=read();
for(int i=1;i<=k;i++)s.pb(read());
cout<<T.getCount(tx,ty,mx,my,r,s);
}
总结:三道题都挺菜的
第一题本来写的很快
但是暴力和对拍写久了
第二题 L C T LCT LCT写挂了,代码能力还是太差
对性质的分析不够
T 3 T3 T3没来得及看
暴力也都没来得及写
代码能力也不行
主观应该 260 + 260+ 260+的
我还是 t c l tcl tcl