算法-LRU存储算法(OC、Python)

需求场景

数据缓存或者持久化一般分为磁盘缓存和内存缓存,如果从读写速度上我们当然希望数据读取的书读越快越好,所以内存缓存倍受青睐,但是内存缓存由于成本限制,我们不能把全部的数据放在内存缓存里,我们该如何取舍呢?
算法-LRU存储算法(OC、Python)_第1张图片

LRU

LRU是Least Recently Used的缩写,意思是最近最少使用的数据,也就是最近使用的数据在未来的一段时间内任然被使用,已经使用很久的数据在未来的一段时间内任然不会变使用。基于这个理念我们可以在内存中保留常用的数据!

就是我们定义一个指定容量的list,每次新加的数据我们都会放在list的最上面,每次访问的数据也会被放在list的最上面,要是加入的数据超出最大容量,删除list的最好一个!

算法源码

1.OC源码

a.实现

/// 初始化
/// @param capacity 容量大小
- (instancetype)initWithCapacity:(NSUInteger)capacity{
    if(self == [super init]){
        _capacity = capacity;
    }
    return self;
}

/// 将对象存入缓存,如果 anyValue 为 nil,会删除对象
/// @param anyValue value
/// @param key key
- (void)setValue:(id)anyValue forKey:(NSString *)key{
    if(anyValue == nil){
        // 删除对象
        return;
    }
    if([self.cacheDict.allKeys containsObject:key]){
        // 当前值已经存在
        [self.keys removeObject:key];
    }else{
        // 新存入的值
        if(self.keys.count == _capacity){
            // 超出最大值了 删除栈里第一个
            NSString *firstKey = [self.keys firstObject];
            [self.keys removeObject:firstKey];
            [self.cacheDict removeObjectForKey:firstKey];
        }
    }
    [self.cacheDict setValue:anyValue forKey:key];
    [self.keys addObject:key];
}

/// 取对象
/// @param key key
- (id)valueForKey:(NSString *)key{
    // 判断是否存在
    if([self.cacheDict.allKeys containsObject:key]){
        [self.keys removeObject:key];
        [self.keys addObject:key];
        return [self.cacheDict objectForKey:key];
    }else{
        return nil;
    }
}

/// 删除对象
/// @param key key
- (void)removeObjectForKey:(NSString *)key{
    if([self.cacheDict.allKeys containsObject:key]){
        [self.keys removeObject:key];
        [self.cacheDict removeObjectForKey:key];
    }else{
        /// 不存在
    }
}

/// 获取所有的数据
/// @param block 键值对回调
- (void)enumerateKeysAndValuesUsingBlock:(void (^)(NSString *key, id obj, BOOL *stop))block{
    [self.keys enumerateObjectsUsingBlock:^(NSString * _Nonnull key, NSUInteger idx, BOOL * _Nonnull stop) {
        if(block){
            block(key, [self.cacheDict objectForKey:key], stop);
        }
    }];
}

/// 更新容量大小
/// @param capacity 容量大小
- (void)resetCapacity:(NSInteger)capacity{
    _capacity = capacity;
}

- (NSMutableArray *)keys{
    if(_keys == nil){
        _keys = [[NSMutableArray alloc] init];
    }
    return _keys;
}

- (NSMutableDictionary *)cacheDict{
    if(_cacheDict == nil){
        _cacheDict = [[NSMutableDictionary alloc] init];
    }
    return _cacheDict;
}

b.使用示例

- (void)viewDidLoad {
    [super viewDidLoad];
    // Do any additional setup after loading the view.
    for (int i = 1; i<=5; i++) {
        NSString *key = [NSString stringWithFormat:@"%d",i];
        NSString *value = [NSString stringWithFormat:@"%d",i * 100];
        [self.lruCacheMap setValue:value forKey:key];
    }
    [self.lruCacheMap enumerateKeysAndValuesUsingBlock:^(NSString *key, id obj, BOOL *stop) {
        NSLog(@"key, value == %@, %@",key, obj);
    }];
    NSLog(@"------------");
    
    [self.lruCacheMap setValue:@"600" forKey:@"6"];
    [self.lruCacheMap enumerateKeysAndValuesUsingBlock:^(NSString *key, id obj, BOOL *stop) {
        NSLog(@"key, value == %@, %@",key, obj);
    }];
    NSLog(@"------------");

    NSLog(@"%@", [self.lruCacheMap valueForKey:@"5"]);
    [self.lruCacheMap enumerateKeysAndValuesUsingBlock:^(NSString *key, id obj, BOOL *stop) {
        NSLog(@"key, value == %@, %@",key, obj);
    }];
    NSLog(@"------------");
    
    NSLog(@"%@", [self.lruCacheMap valueForKey:@"4"]);
    [self.lruCacheMap enumerateKeysAndValuesUsingBlock:^(NSString *key, id obj, BOOL *stop) {
        NSLog(@"key, value == %@, %@",key, obj);
    }];
}

- (LRUCacheMap *)lruCacheMap{
    if(_lruCacheMap == nil){
        _lruCacheMap = [[LRUCacheMap alloc] initWithCapacity:5];
    }
    return _lruCacheMap;
}

c.运行结果

2020-05-22 14:47:01.414530+0800 LRUDemo[65621:2173464] key, value == 1, 100
2020-05-22 14:47:01.414716+0800 LRUDemo[65621:2173464] key, value == 2, 200
2020-05-22 14:47:01.414809+0800 LRUDemo[65621:2173464] key, value == 3, 300
2020-05-22 14:47:01.414905+0800 LRUDemo[65621:2173464] key, value == 4, 400
2020-05-22 14:47:01.414995+0800 LRUDemo[65621:2173464] key, value == 5, 500
2020-05-22 14:47:01.415076+0800 LRUDemo[65621:2173464] ------------
2020-05-22 14:47:01.415169+0800 LRUDemo[65621:2173464] key, value == 2, 200
2020-05-22 14:47:01.415272+0800 LRUDemo[65621:2173464] key, value == 3, 300
2020-05-22 14:47:01.415519+0800 LRUDemo[65621:2173464] key, value == 4, 400
2020-05-22 14:47:01.415698+0800 LRUDemo[65621:2173464] key, value == 5, 500
2020-05-22 14:47:01.416035+0800 LRUDemo[65621:2173464] key, value == 6, 600
2020-05-22 14:47:01.416124+0800 LRUDemo[65621:2173464] ------------
2020-05-22 14:47:01.416314+0800 LRUDemo[65621:2173464] 500
2020-05-22 14:47:01.416453+0800 LRUDemo[65621:2173464] key, value == 2, 200
2020-05-22 14:47:01.416681+0800 LRUDemo[65621:2173464] key, value == 3, 300
2020-05-22 14:47:01.416763+0800 LRUDemo[65621:2173464] key, value == 4, 400
2020-05-22 14:47:01.852132+0800 LRUDemo[65621:2173464] key, value == 6, 600
2020-05-22 14:47:01.852262+0800 LRUDemo[65621:2173464] key, value == 5, 500
2020-05-22 14:47:01.852345+0800 LRUDemo[65621:2173464] ------------
2020-05-22 14:47:01.852431+0800 LRUDemo[65621:2173464] 400
2020-05-22 14:47:01.852507+0800 LRUDemo[65621:2173464] key, value == 2, 200
2020-05-22 14:47:01.852596+0800 LRUDemo[65621:2173464] key, value == 3, 300
2020-05-22 14:47:01.852668+0800 LRUDemo[65621:2173464] key, value == 6, 600
2020-05-22 14:47:01.852760+0800 LRUDemo[65621:2173464] key, value == 5, 500
2020-05-22 14:47:01.852835+0800 LRUDemo[65621:2173464] key, value == 4, 400
Message from debugger: Terminated due to signal 15

Python源码

a.源码实现

from collections import OrderedDict

class LRUCacheMap(object):
	def __init__(self, size):
		super(LRUCacheMap, self).__init__()
		# 总的容量大小
		self.total_capcity = size
		# 所有的键值对
		self.cache_map = OrderedDict()

	# 添加新值
	def set_value(self, key, value):
		if key in self.cache_map.keys():
			# 当前值已经存在
			value = self.cache_map.pop(key)
			self.cache_map[key] = value
		else:
			# 新存入的值
			if len(self.cache_map) == self.total_capcity:
				# 超出最大值了 删除栈里第一个
				self.cache_map.popitem(last = False)
			else:
				pass

			# 添加新的值
			self.cache_map[key] = value

	def get_value(self, key):
		# 判断是否存在
		if key in self.cache_map.keys():
			value = self.cache_map.pop(key)
			self.cache_map[key] = value
		else:
			value = None

		return value

if __name__ == '__main__':
	cache_map = LRUCacheMap(5)
	for index in range(1, 6):
		cache_map.set_value(str(index), index * 100)

	print(cache_map.cache_map)
	print('-' * 100 + '\n')

	cache_map.set_value('6', 600)

	print(cache_map.cache_map)
	print('-' * 100 + '\n')

	print(cache_map.get_value('5'))
	print(cache_map.cache_map)
	print('-' * 100 + '\n')

	print(cache_map.get_value('4'))
	print(cache_map.cache_map)
	print('-' * 100 + '\n')

b.运行结果

OrderedDict([('1', 100), ('2', 200), ('3', 300), ('4', 400), ('5', 500)])
-------------------------------------------------------------------------

OrderedDict([('2', 200), ('3', 300), ('4', 400), ('5', 500), ('6', 600)])
-------------------------------------------------------------------------

500
OrderedDict([('2', 200), ('3', 300), ('4', 400), ('6', 600), ('5', 500)])
-------------------------------------------------------------------------
400
OrderedDict([('2', 200), ('3', 300), ('6', 600), ('5', 500), ('4', 400)])
-------------------------------------------------------------------------

[Finished in 0.0s]

你可能感兴趣的:(iOS开发,Python开发)