https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
http://blog.csdn.net/column/details/15893.html
pascal_voc语义分割排行榜http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
图像分类,物体检测,语义分割,实例分割的联系和区别
图像分割的性能测试指标小结
从特斯拉到计算机视觉之「图像语义分割」
关于图像语义分割的总结和感悟
反卷积与语义分割
全卷积网络(FCN)与图像分割
语义分割相关总结
深度学习入门:Fully Convolutional Networks
深度学习入门:Fully Convolutional Networks for Semantic Segmentation
Fully Convolutional Networks for Semantic Segmentation
深度学习(二十一)基于FCN的图像语义分割-CVPR 2015
全卷积网络 FCN 详解
全卷积网络:从图像级理解到像素级理解
Semantic Segmentation with FCN里的32x, 16x和8x
语义分割--FCN 算法中的一些细节--特征怎么融合
论文阅读笔记:图像分割方法deeplab以及Hole算法解析
DeepLab论文解读
深度学习之DeepLab用于语义分割
[Paper Reading] DeepLab v1 & v2
几分钟看完语义分割经典论文:DeepLab
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
CRF图像分割简介
https://hsh.blog.ustc.edu.cn/wp-content/uploads/2015/09/Class-Segmentation-and-Object-Localization-with-Superpixel-Neighborhoods.pdf
推荐一些用CRF做图像语义分割的资源
Conditional Random Fields as Recurrent Neural Networks
深度学习(三十三)CRF as RNN语义分割-未完待续
CRF as RNN的原理及Caffe实现
图像语义分割之FCN和CRF
CRF as RNN 代码解读
http://www.robots.ox.ac.uk/~szheng/CRFasRNN.html
全卷机神经网络图像分割-keras实现
Learning Deconvolution Network for Semantic Segmentation
《Instance-aware Semantic Segmentation via Multi-task Network Cascades》(MNC),用自己的数据运行
MNC用自己的数据运行得到如下错误:IndexError: index 4 is out of bounds for axis 1 with size 4
论文解读-
图像分割“Instance-aware Semantic Segmentation via Multi-task Network Cascades”
ParseNet论文解读
语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet
多篇用DL做Semantic Segmentation的文章总结
深度学习之PSPnet用于语义分割
几分钟看完PSPnet:Pyramid Scene Parsing Network
Pyramid Scene Parsing Network - arxiv - 1612.01105
图像语义分割之特征整合和结构预测
ICNet
http://blog.csdn.net/yaoliangsjtu/article/details/77620936
Weakly- and Semi-Supervised Learning of a Deep Convolutional Network for Semantic Image Segmentation
CNN在基于弱监督学习的图像分割中的应用
论文笔记 | BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentati
An Adversarial Regularisation for Semi-Supervised Training of Structured Output Neural Networks
弱监督学习在语义分割中的进展与应用?
FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation
Semantic Segmentation using Adversarial Networks
深度对抗学习在图像分割和超分辨率中的应用
论文精读 Learning to Refine Object Segments
基于Mutil-Scale CNN的图片语义分割、法向量估计-ICCV 2015
Simultaneous Detection and Segmentation (SDS)
Hypercolumn Object Segmentation
[Paper Reading] Attention to Scale: Scale-aware Semantic Image Segmentation
几分钟看完 Zifeng Wu的38层网络:Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
几分钟看完RefineNet:RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
几分钟看完zifeng wu instance level segmentation:Bridging Category-level and Instance-level Semantic Image
几分钟看完旷视孙剑最新大作-Large Kernel Matters —— Improve Semantic Segmentation by Global Convolutional Network
论文笔记:Label Refinement Network for Coarse-to-Fine Semantic Segmentation
Fully Convolutional Instance-aware Semantic Segmentation 论文笔记
将CRF的refine替换为边缘检测方法
Semantic Image Segmentation with Task-Specific Edge Detection Using CNNs and a Discriminatively Trained Domain Transform
http://blog.csdn.net/zhangjunhit/article/category/6809642
语义分割 - Semantic Segmentation Papers
Ubuntu下全卷积神经网络(FCN)框架的配置和基本使用
FCN网络训练 终极版
在caffe上做FCN模型fine-tune的一些注意事项
FCN网络的训练——以SIFT-Flow 数据集为例
FCN模型训练中遇到的困难
FCN网络训练 SIFTFLOW数据集
Tensoflow学习记录13--用深度学习来做图像分割Fully Convolutional Networks for Semantic Segmentation (FCNs)
FCN中的transplant
以fcn.berkeleyvision.org的sift-flow-fcn32s为例,训练自己的数据集时除了上面说的要改的地方,还有几个需要注意
1.图像的通道数,如果在VGG上面finetuning的话要求输入通道为3
2.不需要label_geometric,所以要把与它相关的地方都注释掉
(1)siftflow_layers.py中搜索label_geometric,注释掉,if len(top) != 3:改为if len(top) != 2:
(2)trainval.prototxt与test.prototxt中top: "geo"这行注释掉,这个不注释掉会出现check failed:data_的错误
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "score_sem"
bottom: "sem"
top: "loss"
loss_param {
ignore_label: 255
normalize: false
}
}这层以后的和geo相关的层全部注释掉
(3)solve.py中score.seg_tests(solver, False, test, layer='score_geo', gt='geo')这句注释掉
3.几个prototxt文件中最后输出的feature map的num_ouput改成类别数+1
4.改数据输入路径,siftflow_layers.py中的load_image和load_label函数加载图像和label的路径改一下,对应prototxt的param_str: "{\'siftflow_dir\':改成自己的数据路径,solve.py中test = np.loadtxt这句改成test.txt的路径
像素级别的loss的取均值决定learning_rate的数量级. 使用224×224的图片, 如果loss是对单个像素的均值, 则数量级在10−5. 如果是对单张图片的loss, 要再小4个数量级.(caffe fcn使用了10−10),这里是fcn的solver.prototxt。
DeepLab V2 配置bug
DeepLab v2 配置
DeepLab V2安装配置
crfasrnn环境搭建,跑demo
https://github.com/shelhamer/fcn.berkeleyvision.org
https://github.com/torrvision/crfasrnn
https://github.com/martinkersner/train-CRF-RNN
https://github.com/wkentaro/fcn
https://github.com/ycszen/pytorch-ss
https://github.com/msracver/FCIS