query string search
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 1,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "2",
"_score": 1,
"_source": {
"name": "jiajieshi yagao",
"desc": "youxiao fangzhu",
"price": 25,
"producer": "jiajieshi producer",
"tags": [
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_score": 1,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "3",
"_score": 1,
"_source": {
"name": "zhonghua yagao",
"desc": "caoben zhiwu",
"price": 40,
"producer": "zhonghua producer",
"tags": [
"qingxin"
]
}
}
]
}
}
query DSL
GET /ecommerce/product/_search
{
"query": { "match_all": {} }
}
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"name" : "yagao"
}
},
"sort": [
{ "price": "desc" }
]
}
GET /ecommerce/product/_search
{
"query": { "match_all": {} },
"from": 1,
"size": 1
}
GET /ecommerce/product/_search
{
"query": { "match_all": {} },
"_source": ["name", "price"]
}
multi match
查询test_field 或 test_field1列中包含test
GET /test_index/test_type/_search
{
"query": {
"multi_match": {
"query": "test",
"fields": ["test_field", "test_field1"]
}
}
}
bool
用bool组合多个搜索条件,来搜索name
GET /ecommerce/product/_search
{
"query": {
"bool": {
"must": { "match": { "name": "gaolujie" }},
"must_not": { "match": { "name": "jiajieshi" }},
"should": [
{ "match": { "title": "gaolujie" }},
{ "match": { "title": "lengsuanling" }}
]
}
}
}
控制搜索结果的精准度的第二步:指定一些关键字中,必须至少匹配其中50%的关键字,才能作为结果返回
GET /ecommerce/product/_search
{
"query": {
"match": {
"title": {
"query": "gaolujie zhonghua yagao",
"minimum_should_match": "50%"
}
}
}
}
query filter
搜索商品名称包含yagao,而且售价大于25元的商品
GET /ecommerce/product/_search
{
"query" : {
"bool" : {
"must" : {
"match" : {
"name" : "yagao"
}
},
"filter" : {
"range" : {
"price" : { "gt" : 25 }
}
}
}
}
}
full-text search(全文检索)
GET /ecommerce/product/_search
{
"query" : {
"match" : {
"producer" : "yagao producer"
}
}
}
{
"took": 4,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 4,
"max_score": 0.70293105,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "4",
"_score": 0.70293105,
"_source": {
"name": "special yagao",
"desc": "special meibai",
"price": 50,
"producer": "special yagao producer",
"tags": [
"meibai"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "1",
"_score": 0.25811607,
"_source": {
"name": "gaolujie yagao",
"desc": "gaoxiao meibai",
"price": 30,
"producer": "gaolujie producer",
"tags": [
"meibai",
"fangzhu"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "3",
"_score": 0.25811607,
"_source": {
"name": "zhonghua yagao",
"desc": "caoben zhiwu",
"price": 40,
"producer": "zhonghua producer",
"tags": [
"qingxin"
]
}
},
{
"_index": "ecommerce",
"_type": "product",
"_id": "2",
"_score": 0.1805489,
"_source": {
"name": "jiajieshi yagao",
"desc": "youxiao fangzhu",
"price": 25,
"producer": "jiajieshi producer",
"tags": [
"fangzhu"
]
}
}
]
}
}
GET /ecommerce/product/_search
{
"query": {
"match": {
"title": {
"query": "java elasticsearch",
"operator": "and"
}
}
}
}
如果对一个string field进行排序,结果往往不准确,因为分词后是多个单词,再排序就不是我们想要的结果了
通常解决方案是,将一个string field建立两次索引,一个分词,用来进行搜索;一个不分词,用来进行排序(后续篇章讲解)
相当于
{
"bool": {
"must": [
{ "term": { "title": "java" }},
{ "term": { "title": "elasticsearch" }}
]
}
}
phrase search (短语搜索)
GET /ecommerce/product/_search
{
"query" : {
"match_phrase" : {
"producer" : "yagao producer"
}
}
}
{
"took": 11,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 1,
"max_score": 0.70293105,
"hits": [
{
"_index": "ecommerce",
"_type": "product",
"_id": "4",
"_score": 0.70293105,
"_source": {
"name": "special yagao",
"desc": "special meibai",
"price": 50,
"producer": "special yagao producer",
"tags": [
"meibai"
]
}
}
]
}
}
proximity match (近似匹配)
query string,搜索文本,中的几个term,要经过几次移动才能与一个document匹配,这个移动的次数,就是slop
hello world, java is very good, spark is also very good.
java spark,match phrase,搜不到
如果我们指定了slop,那么就允许java spark进行移动,来尝试与doc进行匹配
java is very good spark is
java spark
java --> spark
java --> spark
java --> spark
这里的slop,就是3,因为java spark这个短语,spark移动了3次,就可以跟一个doc匹配上了
slop的含义,不仅仅是说一个query string terms移动几次,跟一个doc匹配上。一个query string terms,最多可以移动几次去尝试跟一个doc匹配上
slop,设置的是3,那么就ok
GET /forum/article/_search
{
"query": {
"match_phrase": {
"title": {
"query": "java spark",
"slop": 3
}
}
}
}
其实,加了slop的phrase match,就是proximity match,近似匹配
1、java spark,短语,doc,phrase match
2、java spark,可以有一定的距离,但是靠的越近,越先搜索出来,proximity match
mget 批量查询
GET /_mget
{
"docs" : [
{
"_index" : "test_index",
"_type" : "test_type",
"_id" : 1
},
{
"_index" : "test_index",
"_type" : "test_type",
"_id" : 2
}
]
}
{
"docs": [
{
"_index": "test_index",
"_type": "test_type",
"_id": "1",
"_version": 2,
"found": true,
"_source": {
"test_field1": "test field1",
"test_field2": "test field2"
}
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "2",
"_version": 1,
"found": true,
"_source": {
"test_content": "my test"
}
}
]
}
GET /test_index/_mget
{
"docs" : [
{
"_type" : "test_type",
"_id" : 1
},
{
"_type" : "test_type",
"_id" : 2
}
]
}
GET /test_index/test_type/_mget
{
"ids": [1, 2]
}
bulk语法
POST /_bulk
{ "delete": { "_index": "test_index", "_type": "test_type", "_id": "3" }}
{ "create": { "_index": "test_index", "_type": "test_type", "_id": "12" }}
{ "test_field": "test12" }
{ "index": { "_index": "test_index", "_type": "test_type", "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_index": "test_index", "_type": "test_type", "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
{
"error": {
"root_cause": [
{
"type": "json_e_o_f_exception",
"reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@5a5932cd; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@5a5932cd; line: 1, column: 3]"
}
],
"type": "json_e_o_f_exception",
"reason": "Unexpected end-of-input: expected close marker for Object (start marker at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@5a5932cd; line: 1, column: 1])\n at [Source: org.elasticsearch.transport.netty4.ByteBufStreamInput@5a5932cd; line: 1, column: 3]"
},
"status": 500
}
{
"took": 41,
"errors": true,
"items": [
{
"delete": {
"found": true,
"_index": "test_index",
"_type": "test_type",
"_id": "10",
"_version": 3,
"result": "deleted",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"status": 200
}
},
{
"create": {
"_index": "test_index",
"_type": "test_type",
"_id": "3",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true,
"status": 201
}
},
{
"create": {
"_index": "test_index",
"_type": "test_type",
"_id": "2",
"status": 409,
"error": {
"type": "version_conflict_engine_exception",
"reason": "[test_type][2]: version conflict, document already exists (current version [1])",
"index_uuid": "6m0G7yx7R1KECWWGnfH1sw",
"shard": "2",
"index": "test_index"
}
}
},
{
"index": {
"_index": "test_index",
"_type": "test_type",
"_id": "4",
"_version": 1,
"result": "created",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": true,
"status": 201
}
},
{
"index": {
"_index": "test_index",
"_type": "test_type",
"_id": "2",
"_version": 2,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"created": false,
"status": 200
}
},
{
"update": {
"_index": "test_index",
"_type": "test_type",
"_id": "1",
"_version": 3,
"result": "updated",
"_shards": {
"total": 2,
"successful": 1,
"failed": 0
},
"status": 200
}
}
]
}
POST /test_index/_bulk
{ "delete": { "_type": "test_type", "_id": "3" }}
{ "create": { "_type": "test_type", "_id": "12" }}
{ "test_field": "test12" }
{ "index": { "_type": "test_type" }}
{ "test_field": "auto-generate id test" }
{ "index": { "_type": "test_type", "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_type": "test_type", "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
POST /test_index/test_type/_bulk
{ "delete": { "_id": "3" }}
{ "create": { "_id": "12" }}
{ "test_field": "test12" }
{ "index": { }}
{ "test_field": "auto-generate id test" }
{ "index": { "_id": "2" }}
{ "test_field": "replaced test2" }
{ "update": { "_id": "1", "_retry_on_conflict" : 3} }
{ "doc" : {"test_field2" : "bulk test1"} }
scoll
如果一次性要查出来比如10万条数据,那么性能会很差,此时一般会采取用scoll滚动查询,一批一批的查,直到所有数据都查询完处理完。使用scoll滚动搜索,可以先搜索一批数据,然后下次再搜索一批数据,以此类推,直到搜索出全部的数据来scoll搜索会在第一次搜索的时候,保存一个当时的视图快照,之后只会基于该旧的视图快照提供数据搜索,如果这个期间数据变更,是不会让用户看到的
采用基于_doc进行排序的方式,性能较高
每次发送scroll请求,我们还需要指定一个scoll参数,指定一个时间窗口,每次搜索请求只要在这个时间窗口内能完成就可以了
GET /test_index/test_type/_search?scroll=1m
{
"query": {
"match_all": {}
},
"sort": [ "_doc" ],
"size": 3
}
{
"_scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAACxeFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAALF8WNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAACxhFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYhY0b25zVFlWWlRqR3ZJajlfc3BXejJ3",
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"failed": 0
},
"hits": {
"total": 10,
"max_score": null,
"hits": [
{
"_index": "test_index",
"_type": "test_type",
"_id": "8",
"_score": null,
"_source": {
"test_field": "test client 2"
},
"sort": [
0
]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "6",
"_score": null,
"_source": {
"test_field": "tes test"
},
"sort": [
0
]
},
{
"_index": "test_index",
"_type": "test_type",
"_id": "AVp4RN0bhjxldOOnBxaE",
"_score": null,
"_source": {
"test_content": "my test"
},
"sort": [
0
]
}
]
}
}
获得的结果会有一个scoll_id,下一次再发送scoll请求的时候,必须带上这个scoll_id
GET /_search/scroll
{
"scroll": "1m",
"scroll_id" : "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAACxeFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYBY0b25zVFlWWlRqR3ZJajlfc3BXejJ3AAAAAAAALF8WNG9uc1RZVlpUakd2SWo5X3NwV3oydwAAAAAAACxhFjRvbnNUWVZaVGpHdklqOV9zcFd6MncAAAAAAAAsYhY0b25zVFlWWlRqR3ZJajlfc3BXejJ3"
}
scoll,看起来挺像分页的,但是其实使用场景不一样。分页主要是用来一页一页搜索,给用户看的;scoll主要是用来一批一批检索数据,让系统进行处理的