tensorflow下多RNN的MNIST数据集训练

直接贴代码,第三章,原来教程在这里:http://blog.csdn.net/jerr__y/article/category/6747409,手动感谢永永夜大大

数据集和笔记是大大的:https://github.com/yongyehuang/Tensorflow-Tutorial

对了,大大的是GPU条件下的,我的是虚拟机上的CPU版本。



import numpy as np
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
#导入MNIST数据集
sess = tf.InteractiveSession()
#初始化session
print mnist.test.labels.shape
print mnist.train.labels.shape
#数据的输入输出大小
#权值定义函数
def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    #tf.truncated_normal(shape, mean, stddev) shape表示生成张量的维度,mean是均值,stddev是标准差。这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产
    #生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的正太分布的产生随机数据比起来,
    #这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能de
    #博客:http://blog.csdn.net/u013713117/article/details/65446361
    return tf.Variable(initial)
    #Variable有疑问的可以参看:http://blog.csdn.net/gg_18826075157/article/details/78368924
#偏差定义函数
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 定义卷积层
def conv2d(x, W):
    # 默认 strides[0]=strides[3]=1, strides[1]x方向步长,strides[2]y方向步长
    return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME',use_cudnn_on_gpu=False)
    #tf.nn.conv2d不理解的请看:https://www.cnblogs.com/qggg/p/6832342.html

# pooling def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
#池化操作:http://blog.csdn.net/mao_xiao_feng/article/details/53453926

X_ = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

# X转为卷积所需要的形式
X = tf.reshape(X_, [-1, 28, 28, 1])
# 第一层卷积:5×5×1卷积核32 [55132],h_conv1.shape=[-1, 28, 28, 32]
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(X, W_conv1) + b_conv1)

# 第一个pooling [-1, 28, 28, 32]->[-1, 14, 14, 32]
h_pool1 = max_pool_2x2(h_conv1)

# 第二层卷积:5×5×32卷积核64 [553264],h_conv2.shape=[-1, 14, 14, 64]
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

# 第二个pooling ,[-1, 14, 14, 64]->[-1, 7, 7, 64]
h_pool2 = max_pool_2x2(h_conv2)

# flatten层,[-1, 7, 7, 64]->[-1, 7*7*64],即每个样本得到一个7*7*64维的样本
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])

# fc1
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# dropout: 输出的维度和h_fc1一样,只是随机部分值被值为零
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#tf.nn.dropouthttps://www.cnblogs.com/qggg/p/6849881.html
# 输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 题外话:在做这个例子的过程中遇到过:资源耗尽的错误,为什么?
# -> 因为之前每次做 train_acc  的时候用了全部的 55000 张图,显存爆了.

# 1.损失函数:cross_entropy
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# 2.优化函数:AdamOptimizer
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#tf.train.AdamOptimizerhttp://blog.csdn.net/xierhacker/article/details/53174558

# 3.预测准确结果统计
# 预测值中最大值(1)即分类结果,是否等于原始标签中的(1)的位置。argmax()取最大值所在的下标
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


# 如果一次性来做测试的话,可能占用的显存会比较多,所以测试的时候也可以设置较小的batch来看准确率
test_acc_sum = tf.Variable(0.0)
batch_acc = tf.placeholder(tf.float32)
new_test_acc_sum = tf.add(test_acc_sum, batch_acc)
update = tf.assign(test_acc_sum, new_test_acc_sum)

# 定义了变量必须要初始化,或者下面形式
sess.run(tf.global_variables_initializer())
# 或者某个变量单独初始化 如:
# x.initializer.run()

# 训练
for i in range(5000):
    X_batch, y_batch = mnist.train.next_batch(batch_size=50)
    if i % 500 == 0:
        train_accuracy = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})
        print "step %d, training acc %g" % (i, train_accuracy)
    train_step.run(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 0.5})

# 全部训练完了再做测试,batch_size=100

for i in range(100):
    X_batch, y_batch = mnist.test.next_batch(batch_size=100)
    test_acc = accuracy.eval(feed_dict={X_: X_batch, y_: y_batch, keep_prob: 1.0})
    update.eval(feed_dict={batch_acc: test_acc})
    if (i+1) % 20 == 0:
        print "testing step %d, test_acc_sum %g" % (i+1, test_acc_sum.eval())
print " test_accuracy %g" % (test_acc_sum.eval() / 100.0)

你可能感兴趣的:(tensorflow,RNN)