- 无公网IP 外网访问本地文件下载器 Transmission
路由侠内网穿透
tcp/ip网络协议网络docker
Transmission是一款开源的BitTorrent客户端,主要用于下载和管理通过BitTorrent协议共享的文件。它是一种点对点(P2P)文件分发协议,它允许用户从多个来源下载数据块,并将这些数据块组合成完整的文件。这种方式可以有效地减轻单个服务器的负载,并加速大文件的分发。本文将详细的介绍如何利用Docker在本地部署Transmission并结合路由侠实现外网访问本地部署的Transm
- Python 深度学习实战:生成对抗网络
AI天才研究院
深度学习实战AI实战AI大模型企业级应用开发实战大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
1.背景介绍生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来较火热的深度学习模型之一,其在图像合成、视频生成、文本数据生成等领域均取得了不俗的效果。与传统的机器学习模型不同,GAN可以生成真实有效的数据,无需人工标注数据。它由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器通过学习,根据噪声或随机变量(latentvar
- linux性能提升之sendmmsg和recvmmsg
夏天匆匆2过
C/C++linux单片机c++网络协议udptcp
目录sendmsg、sendmmsg和recvmmsg相关结构体:mmsghdr、msghdr、iovecsendmmsg性能测试关于connectsendmsg、sendmmsg和recvmmsg以udp发送为例。sendmsg和sendmmsg:两者都能发送多块数据,区别在于sendmsg会将所有数据整合成一个UDP包发出,sendmmsg是每个mmsghdr一个UDP包。sendmmsg是s
- 数字输出格式中的RAW与PCM有哪些区别
~远在太平洋~
测试pcmRAW
数字输出格式中的RAW与PCM在音频和视频处理领域有着显著的区别。以下是对这两种格式的详细比较:一、定义与原理RAW定义:RAW通常指的是未经任何处理或压缩的原始数据格式。在音频领域,它表示音频文件中未经过编码或压缩的纯音频数据。原理:RAW音频数据直接从音频源(如麦克风、乐器等)获取,不经过任何形式的编码或压缩处理。PCM(PulseCodeModulation,脉冲编码调制)定义:PCM是一种
- ABAQUS后处理技巧:内力查看的两种方式
技术邻工科学院
仿真模拟工程技术深度学习
有些时候,不止是想知道部件的应力分布状况,也想知道部件某个截面的内力状况怎么办?除了外力接触力,也想知道Tie约束的面之间的作用力怎么办?有点困惑了,不知道结果在哪了?通常我们会想到用节点力的输出来合成,可是节点力似乎不够便捷直观,怎么办?这些确实不是一般状况我们需要了解或者查看的结果,不过当我们需要这些结果的时候我们也得有相关技能,现在来GET这些技能吧:方式一:FreeBodyCut在ABAQ
- 语言模型的价值定位与技术突破:从信息处理到创新认知
XianxinMao
语言模型人工智能chatgpt
标题:语言模型的价值定位与技术突破:从信息处理到创新认知文章信息摘要:当前语言模型的核心价值主要体现在信息综合与处理能力上,用户友好的交互界面是其成功关键。在模型计算机制方面,推理能力的实现包括chain-of-thought和自适应计算两种范式,而内部计算过程研究将成为未来重点。数据质量方面,需要权衡人工标注与合成数据的使用比例,后者展现出显著潜力但仍需完善质量控制机制。基础模型评估应建立在多维
- Web 性能入门指南-2.4 理解和改进累积布局偏移 (CLS)
前端后花园
Web性能入门指南前端javascriptWeb性能性能监控chrome
累积布局偏移量衡量页面的视觉稳定性。人性化的定义是,CLS可帮助您了解页面给浏览者带来不顺畅、不愉快体验的可能性。CLS是一种基于公式的指标,它考虑了网页的视觉内容在视口内的移动量,以及这些视觉元素移动的距离。CLS可以通过合成和RUM来衡量。Google建议您的网页的CLS分数不超过0.1。什么因素导致CLS恶化?累积布局偏移的好处之一是,它让我们跳出通常的基于时间的指标的思维,而是让我们思考未
- EMO2: 情感表达驱动的语音控制头像视频生成
AIGC探路者
计算机视觉数字人talkingheadtalkingfaceAIGC
本文提出了一种新颖的语音驱动说话头像方法,能够同时生成高度表现力的面部表情和手势。与现有专注于生成全身或半身姿态的方法不同,我们研究了语音手势生成的挑战,并识别出音频特征与全身手势之间较弱的对应关系作为关键限制。为解决这一问题,我们将任务重新定义为两阶段过程。在第一阶段,我们直接从音频输入生成手部姿势,利用音频信号与手部动作之间的强相关性。在第二阶段,我们采用扩散模型合成视频帧,结合第一阶段生成的
- matlab构造线性相位FIR滤波器
~Young.
matlab开发语言
文章目录前言一、构造一组声音二、采用FIR滤波器做频率筛选前言用生成的一组音频文件举例一、构造一组声音模拟钢琴音乐,采用逐渐衰减振荡的正弦波FFT的频域展示:源代码:functionsound_firFs=1000;%采样频率freq=[200,230,260,290,320,350,380,410,440,470];%频率数组rythm=0.5;%持续时间,单位:秒gap_duration=0.
- 用GANs生成艺术作品的创新探索:人工智能与艺术的奇妙碰撞
Echo_Wish
前沿技术人工智能人工智能ganpython
用GANs生成艺术作品的创新探索:人工智能与艺术的奇妙碰撞随着人工智能技术的飞速发展,生成对抗网络(GenerativeAdversarialNetworks,GANs)在图像生成、视频生成、音频合成等领域展现出了惊人的创造力。特别是在艺术创作方面,GANs以其独特的生成能力,为艺术家和创作者提供了新的灵感和工具。本文将探讨GANs在艺术作品生成中的应用与创新,并通过具体代码示例展示其实现过程。一
- 大文件分块上传.断点续传.秒传
我是奶龙!我是奶龙!我是奶龙!
html5cssjavascriptspringboot
大文件分块上传分片上传,就是将所要上传的文件,按照一定的大小,将整个文件分隔成多个数据块(我们称之为Part)来进行分别上传,上传完之后再由服务端对所有上传的文件进行汇总整合成原始的文件。分片上传适用场景1.大文件上传2.网络环境环境不好,存在需要重传风险的场景分片上传的基本流程图1.将待上传文件按照一定大小进行分片。2.使用InitiateMultipartUpload接口初始化一个分片上传任务
- 【AI论文】PaSa:一款用于全面学术论文搜索的大型语言模型(LLM)代理
东临碣石82
人工智能语言模型自然语言处理
摘要:我们推出了PaSa,这是一款由大型语言模型驱动的高级论文搜索代理。PaSa能够自主做出一系列决策,包括调用搜索工具、阅读论文以及选择相关参考文献,从而最终为复杂的学术查询提供全面且准确的结果。我们使用强化学习方法和一个合成数据集AutoScholarQuery对PaSa进行了优化,该数据集包含3.5万个细粒度的学术查询以及来自顶级人工智能会议出版物的相应论文。此外,我们还开发了RealSch
- 控制语句、方法、递归算法
盗格拉斯
java算法java
一、控制语句把语句组合成能完成一定功能的小逻辑模块。它分为三类:顺序、选择和循环。1.“顺序结构”代表“先执行a,再执行b”的逻辑。2.“条件判断结构”代表“如果…,则…”的逻辑。3.“循环结构”代表“如果…,则重复执行…”的逻辑。很神奇的是,三种流程控制语句就能表示所有的事情!不信,你可以试试拆分你遇到的各种事情。实际上,任何软件和程序,小到一个练习,大到一个操作系统,本质上都是由“变量、选择语
- 利用Ollama和OpenAI实现多查询RAG检索
jkgSFS
前端javascript开发语言python
在这篇文章中,我们将探讨如何结合使用Ollama和OpenAI的多查询检索技术(RAG)来增强信息检索的准确性和效率。多查询检索器是一种查询转换的例子,它基于用户的输入查询生成多个不同视角的查询。对于每个查询,系统检索一组相关文档,并合并所有查询的独特联合体以进行答案合成。技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合检索与生成的技术,它通过在生成答案之
- 大模型GUI系列论文阅读 DAY2续:《一个具备规划、长上下文理解和程序合成能力的真实世界Web代理》
feifeikon
论文阅读
摘要预训练的大语言模型(LLMs)近年来在自主网页自动化方面实现了更好的泛化能力和样本效率。然而,在真实世界的网站上,其性能仍然受到以下问题的影响:(1)开放领域的复杂性,(2)有限的上下文长度,(3)在HTML结构上的归纳偏差不足。我们提出WebAgent,一个由LLM驱动的智能代理,能够通过自我学习的方式,在真实网站上按照自然语言指令完成任务。WebAgent通过将指令提前规划,将其分解为子指
- C++实现设计模式---组合模式 (Composite)
计算机小混子
设计模式c++设计模式组合模式
组合模式(Composite)组合模式是一种结构型设计模式,它将对象组合成树形结构以表示“部分-整体”的层次结构。组合模式使客户端对单个对象和组合对象的使用具有一致性。意图将对象组合成树形结构,以表示“部分-整体”的层次结构。使得客户端可以以一致的方式处理单个对象和对象的组合。使用场景需要表示部分与整体的层次结构:如文件系统、组织架构等。客户端需要以一致的方式处理单个对象和组合对象:统一处理方式简
- 计算机系统原理:一些断言
梅见十柒
计算机系统原理经验分享笔记
0虚拟机和解释器在Java中,JVM既充当了一个虚拟机的角色,也包含了用于执行字节码的解释器。同样地,Python的CPython实现也是先将源代码编译成字节码,然后由Python虚拟机执行。1从源代码中提取token的过程就是词法分析词法分析是编译过程的第一个阶段,它的主要职责是从源代码中读取字符序列,并根据语言的词法规则将它们组合成具有独立意义的最小语法单元——Token。词法分析器会去除无关
- 【python】实用的文件操作-多个excel文件的两种合并方式
匡虐
文件操作python
【python】实用的文件操作-excel文件两种合并方式工作中常遇到多个excel文件表的结构一样,只是内容不同,现需要将其合并在一起。有两种方式,一种是合并成一张表,将其他表中的数据追加到同一张表中。另外一种是存放成一个文件多张表,不同的文件放到一个excel文件的不同工作簿中。1、合成一张表importpandasaspdimportospath=r'C:\Users\lenovo\Docu
- RV1126+FFMPEG推流项目(1)总体框架讲解
学习嵌入式的小羊~
ffmpeg音视频
音视频推流项目的讲解项目介绍本项目通过RV1126采集摄像头和麦克风数据,采用H.264/H.265视频编码技术和AAC音频编码技术进行压缩和合成复合流,然后推送到流媒体服务器。项目框图下图展示了整个项目的总体流程图,核心部分包括:暂时无法在飞书文档外展示此内容2.1视频采集与编码使用RV1126的API对CMOS摄像头进行采集,并进行H.264/H.265编码。编码后的视频数据存放到视频编码队列
- MoviePy视频编辑和处理Python库的版本问题解决:No module named ‘moviepy.editor‘
封步宇AIGC
文字音频视频自动化工具python音视频ffmpeg人工智能
MoviePy是一个强大的Python库,用于视频编辑和处理。它支持多种基本操作,如视频剪切、拼接、插入标题,以及更高级的视频合成(非线性编辑)、视频处理和自定义特效创建。MoviePy能够读写包括GIF在内的常见音频和视频格式,并且兼容Windows、Mac和Linux操作系统,支持Python2.7和3.x版本MoviePy基于ffmpeg和ImageMagick,提供了易于使用的API,能够
- 深度解析 React 合成事件:机制、作用及与 Vue 事件机制的对比
前端vue.jsreact
在前端开发领域,React与Vue作为两款备受瞩目的框架,凭借独特的设计理念和技术架构,为开发者打造出截然不同的开发体验。React的合成事件是其核心亮点之一,Vue则采用了别具一格的事件处理机制,二者的差异背后蕴藏着多方面的考量。一、React合成事件的底层剖析(一)事件创建与封装细节当DOM事件触发,React会第一时间在内部事件池中检索对应的合成事件实例。若未找到,便依据原生事件类型,像cl
- ZYNQ&FPGA 时钟IP核(MMCM PLL)实验
Nadukab
fpgaverilog嵌入式
时钟资源简介:7系列的FPGA使用了专用的全局(Global)和区域(Regional)时钟资源来管理和设计不同的时钟需求。ClockManagementTiles(CMT)提供了时钟合成(Clockfrequencysynthesis),倾斜矫正(deskew),过滤抖动(jitterfiltering)功能。一个CMT包括一个MMCM和一个PLL。7系列FPGA高层次时钟结构视图:ClockR
- C++的构造函数、默认构造函数和=default
青草地溪水旁
C++学习记录c++linux
目录1.基本概念2.为什么要加=default?3.参考资料1.基本概念构造函数(contructor)是特殊的成员函数,其作用是控制对象的初始化,初始化类的数据成员。默认构造函数的必要充分条件是构造函数无参默认构造函数分两种:一种是按照C++定义类的规则由编译器自动生成的,即:如果没有显示(隐式的)的定义默认的构造函数,则编译器会为类合成一个默认构造函数。在定义一个类的时候,如果没有定义任何一个
- 【机器学习实战中阶】音乐流派分类-自动化分类不同音乐风格
精通代码大仙
数据挖掘深度学习python机器学习分类自动化人工智能数据挖掘深度学习
音乐流派分类–自动化分类不同音乐风格在本教程中,我们将开发一个深度学习项目,用于自动化地从音频文件中分类不同的音乐流派。我们将使用音频文件的频率域和时间域低级特征来分类这些音频文件。对于这个项目,我们需要一个具有相似大小和相似频率范围的音频曲目数据集。GTZAN流派分类数据集是音乐流派分类项目中最推荐的数据集,并且它是为了这个任务而收集的。音乐流派分类器模型音乐流派分类关于数据集:GTZAN流派收
- Python3使用ffmpeg合成简单版数字人
放天狼
ffmpeg视频
在视频制作领域中,绿幕技术是一种常见的方法,用于将视频中的主体与背景分离。然后,通过将主体与另一背景图片或视频合成,可以创造出各种视觉效果。在这篇文章中,我将介绍如何使用FFmpeg将背景图片与绿幕视频合并,从而生成一个数字人视频。1.准备工作首先,资源准备:一段拍摄的绿幕视频,视频中的主体应清晰可见,背景颜色均匀一张用作背景的图片。机器安装好的FFmpeg工具,确保在命令行下,可以调用此命令2.
- 使用vue3实现语音交互的前端页面
Rverdoser
交互前端
要在Vue3中实现语音交互的前端页面,你可以使用WebSpeechAPI。以下是一个简单的例子,展示了如何在Vue3组件中集成语音识别(speechrecognition)和语音合成(speechsynthesis)功能。首先,确保你的项目中安装了vue3。npminstallvue@next然后,创建一个Vue组件:开始录音开始播放import{ref}from'vue';constSpeech
- Java语音识别:开启人机交互的新篇章
苏-言
语音识别人机交互人工智能
语音识别思路:首先使用工具类开始录音并存储再调用百度语音识别API接口进行语音内容的识别导入依赖:com.alibabafastjson1.2.83com.squareup.okhttp3okhttp4.9.3ws.schildjave-all-deps3.5.0com.baidu.aipjava-sdk4.16.19编写语音合成工具类:/***录音,存储为WAV文件*@authoradmin_7
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- 快速傅里叶变换
华东算法王(原聪明的小孩子
小孩哥总结MIT线性代数线性代数矩阵
快速傅里叶变换(FFT)快速傅里叶变换(FFT)是一种高效的算法,用于计算离散傅里叶变换(DFT)和其逆变换。傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像分析、数据压缩、声音合成等领域。传统的离散傅里叶变换算法的计算复杂度较高,而快速傅里叶变换通过减少计算量,大大提高了运算速度。1.离散傅里叶变换(DFT)离散傅里叶变换(DFT)将离散的时间信号变换到频域。对于一个长度为(N)的离散序
- Python 对海表面温度进行EOF分解与前n模态合成
我有一个梦想——人在家中葛优躺
pythonmatplotlib
一、EOF分解数据来源:来自NOAA的2017-2021年0.25°×0.25°的日平均OISST数据(海表面温度数据)。关于EOF的理解:利用2017-2020年4年数据进行EOF分解,2021年1月1日的数据来做合成检验。对长度是1461的二维海表面温度数据进行分解,分解得到的时间序列一共1461组长度1461的时间序列,一共1461个二维空间模态。按照方差大小从前到后。代码实现:import
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri