第五部分 猫狗大战(Colab)
5.1 基础知识储备
1.Pytorch:transforms的二十二个方法,推荐博客链接:
5.2 代码详解
1.导入相关库,检查是否在使用GPU设备(Colab)
import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json
# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())
2.下载数据集(缩小版数据集)
! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip
3.数据处理
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
vgg_format = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
data_dir = './dogscats'
dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
for x in ['train', 'valid']}
dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes
代码详解:
transforms.Normalize():对图片进行标准化处理,使用Imagenet的均值和标准差
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]为Imagenet预设模型transforms.Compose():串联多个图片变换的操作
CenterCrop(224):依据给定的size从中心裁剪
transforms.ToTensor():将PIL Image(Python Image Library)或者ndarray(N维数组对象)转化为tensor(张量),并且归一化至[0-1]
datasets.ImageFolder(os.path.join(data_dir, x):加载该路径的数据
下图为dsets的属性:
# 通过下面代码可以查看 dsets 的一些属性
print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)
loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)
'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
print(count, end='\n')
if count == 1:
inputs_try,labels_try = data
count +=1
print(labels_try)
print(inputs_try.shape)
代码详解:
loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6):
输入的数据类型为dataset;每次输入数据的行数为batch_size;shuffle为true,即将输入数据的顺序打乱(数据为无序列特征的可以使用);num_workers:使用6个子进程来导入数据。
显示图片
# 显示图片的小程序
def imshow(inp, title=None):
# Imshow for Tensor.
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = np.clip(std * inp + mean, 0,1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])
4.创建VGG Model
直接使用预训练好的VGG模型进行预测,使用softmax对结果进行预处理,展示识别结果。
softmax详解,
#下载ImgaeNet1000个类的JSON文件
!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
model_vgg = models.vgg16(pretrained=True)
with open('./imagenet_class_index.json') as f:
class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]
inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)
outputs_try = model_vgg(inputs_try)
print(outputs_try)
print(outputs_try.shape)
'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)
print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)
print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()),
title=[dset_classes[x] for x in labels_try.data.cpu()])
代码详解:
VGG16详细过程,见博客https://blog.csdn.net/qq_43270687/article/details/93471659
inputs_try.to(device):将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。
print(model_vgg)
model_vgg_new = model_vgg;
for param in model_vgg_new.parameters():
param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)
model_vgg_new = model_vgg_new.to(device)
print(model_vgg_new.classifier)
代码详解
model_vgg_new.parameters():返回一个迭代器,迭代器每次生成的是Tensor类型的数据。
param.requires_grad:所有的tensor都有.requires_grad属性,requires_grad=True(要求梯度)
kernel_size表示卷积核的大小为3X3的,stride表示步长,padding表示的是填充值。
5.修改最后一层,冻结前面层的参数
'''
第一步:创建损失函数和优化器
损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签.
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络.
'''
criterion = nn.NLLLoss()
# 学习率
lr = 0.001
# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)
'''
第二步:训练模型
'''
def train_model(model,dataloader,size,epochs=1,optimizer=None):
model.train()
for epoch in range(epochs):
running_loss = 0.0
running_corrects = 0
count = 0
for inputs,classes in dataloader:
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model(inputs)
loss = criterion(outputs,classes)
optimizer = optimizer
optimizer.zero_grad()
loss.backward()
optimizer.step()
_,preds = torch.max(outputs.data,1)
# statistics
running_loss += loss.data.item()
running_corrects += torch.sum(preds == classes.data)
count += len(inputs)
print('Training: No. ', count, ' process ... total: ', size)
epoch_loss = running_loss / size
epoch_acc = running_corrects.data.item() / size
print('Loss: {:.4f} Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1,
optimizer=optimizer_vgg)
上述代码采用的SGD优化器,且epoch为1,在接下来的代码中,修改为Adam优化器,epoch的次数选择为10。
def train_model(model,criterion,optimizer,num_epochs):
model.train()
print(0)
#保存验证集上准确率最高的模型
best_model = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
running_loss = 0.0
running_corrects = 0
for inputs,labels in loader_train:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
_,preds = torch.max(outputs,1)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_corrects += (preds == labels).sum().item()
epoch_loss = running_loss / dset_sizes['train']
epoch_acc = running_corrects / dset_sizes['train']
print("Train Loss:{:.4f} Acc:{:.4f}".format(epoch_loss,epoch_acc))
with torch.set_grad_enabled(False):
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs,labels in loader_valid:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_,preds = torch.max(outputs,1)
loss = criterion(outputs,labels)
running_loss += loss.item()
running_corrects += (preds == labels).sum().item()
epoch_loss = running_loss / dset_sizes['valid']
epoch_acc = running_corrects / dset_sizes['valid']
print("Valid Loss:{:.4f} Acc:{:.4f}".format(epoch_loss,epoch_acc))
if epoch_acc > best_acc:
best_model = copy.deepcopy(model.state_dict())
best_acc = epoch_acc
print("Best val Acc:{:.4f}".format(best_acc))
model.load_state_dict(best_model)
return model
def test_model(model):
pred = []
for inputs in test_loader:
inputs = inputs.to(device)
outputs = model(inputs)
_,preds = torch.max(outputs,1)
for i in preds:
pred.append(i.item())
return pred
model_vgg = models.vgg19(pretrained=True)
for param in model_vgg.features.parameters():
param.requires_grad = False
model_vgg.classifier._modules['0'] = nn.Linear(25088, 1024)
model_vgg.classifier._modules['3'] = nn.Linear(1024, 128)
model_vgg.classifier._modules['6'] = nn.Linear(128, 2)
model_vgg.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
#Adam是一种学习率自适应的算法
optimizer = optim.Adam(model_vgg.parameters(), lr=0.001)
model = train_model(model_vgg, criterion, optimizer,
num_epochs=10)
pre = test_model(model)
import csv
f = open('result.csv','w',encoding='utf-8',newline="")
csv_writer = csv.writer(f)
for i,pred in enumerate(pre):a
csv_writer.writerow([i,pred])
f.close()
总结
通过此次对进阶练习的学习,清楚的认识到了自己的不足,且收获很多,为我今后的学习指明了方向(特别感谢解志杰同学的帮助!!)。以上代码取材于老师给的材料,目前的实力还没能达到修改其他内容,仅仅对VGG模型和模型训练的过程有初步的了解,因此保留原代码添加注释,在今后学习的过程中再回顾。