13. 均匀分布和指数分布

文章目录

  • 均匀分布和指数分布
    • 均匀分布的定义
      • 性质:均匀分布具有等可能性
      • 均匀分布的概率计算
    • 指数分布的定义
      • 性质:指数分布具有无记忆性

均匀分布和指数分布

均匀分布的定义

X X X 的概率密度函数为

f ( x ) = { 1 b − a , x ∈ ( a , b ) ; 0 , 其他. f(x)=\begin{cases} \cfrac{1}{b-a}, & x\in(a,b); \\ 0, &\text{其他.} \end{cases} f(x)=ba1,0,x(a,b);其他.

其中 a < b aa<b,就称 X X X 服从 ( a , b ) (a,b) (a,b) 上的均匀分布( U n i f o r m {\it Uniform} Uniform

记为 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b) X ∼ U n i f   ( a , b ) X\sim {\it Unif}\,(a,b) XUnif(a,b).

其中

f ( x ) = { c , x ∈ ( a , b ) ; 0 , 其他. f(x)=\begin{cases} c, & x\in(a,b); \\ 0, & \text{其他.} \end{cases} f(x)={c,0,x(a,b);其他.

∵ ∫ − ∞ + ∞ f ( x )   d x = 1 , 即 ∫ a b c   d x = 1    ⟹    c = 1 / ( b − a ) \because \int_{-\infty}^{+\infty} f(x) \, {\rm d}x = 1,即 \int_a^b c \, {\rm d}x=1 \implies c = 1 / (b-a) +f(x)dx=1,abcdx=1c=1/(ba)


性质:均匀分布具有等可能性

即,对于任意的 a < k < k + l < b aa<k<k+l<b,均有

P ( k < X < k + l ) = ∫ k k + l 1 b − a   d t = l b − a    ⟹    与 k 无 关 , 仅 与 l 有 关 。 P(kP(k<X<k+l)=kk+lba1dt=balkl

即,服从 U ( a , b ) U(a,b) U(a,b) 上的均匀分布的随机变量 X X X 落入 ( a , b ) (a,b) (a,b) 种的任意子区间上的概率只与其区间长度有关与区间所处的位置无关。

即, X X X 落入 ( a , b ) (a,b) (a,b) 中的等长度的任意子区间上是等可能的

X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),则 P ( a < X < b ) = 1 P(aP(a<X<b)=1.

且分布函数为

F ( x ) = { 0 , x < a ; x − a b − a , a ≤ x < b ; 1 , x ≥ b . F(x)=\begin{cases} 0,& xF(x)=0,baxa,1,x<a;ax<b;xb.

∵ \because a ≤ x < b a\leq x < b ax<b 时, F ( x ) = ∫ − ∞ x f ( t )   d t = ∫ a x 1 b − a   d t = x − a b − a F(x)=\int_{-\infty}^{x} f(t) \, {\rm d}t = \int_a^x \cfrac{1}{b-a} \, {\rm d}t = \cfrac{x-a}{b-a} F(x)=xf(t)dt=axba1dt=baxa


例 1: 在区间 (-1,2) 上随机取一数 X X X,求:(1)试写出 X X X 的概率密度函数;(2)概述在 (-0.5,1) 的概率;(3)该数为正数的概率。

解:

(1) X X X 应在区间 (-1,2) 服从均匀分布,故 X X X 的概率密度函数为

f ( x ) = { 1 / 3 , x ∈ ( − 1 , 2 ) ; 0 , 其他. f(x)=\begin{cases} 1/3, & x\in (-1,2); \\ 0, &\text{其他.} \end{cases} f(x)={1/3,0,x(1,2);其他.

(2)
P ( − 0.5 < X < 1 ) = ∫ 0.5 1 f ( x )   d x = ∫ 0.5 1 1 3   d x = 1 − ( − 0.5 ) 3 = 1 2 P(-0.5P(0.5<X<1)=0.51f(x)dx=0.5131dx=31(0.5)=21

可以看到 分子 1-(-0.5) 其实是 (-0.5, 1) 的长度,而分母是 (-1, 2)的长度。

(3)

P ( X > 0 ) = ∫ 0 + ∞ f ( x )   d x = ∫ 0 2 1 3   d x = 2 − 0 3 . P(X>0)=\int_0^{+\infty} f(x) \, {\rm d}x = \int_0^2 \cfrac{1}{3} \, {\rm d}x = \frac{2-0}{3}. P(X>0)=0+f(x)dx=0231dx=320.

这里同样可以看出 分子相当于 ( 0 , + ∞ ) ⋂ ( − 1 , 2 ) = ( 0 , 2 ) (0, +\infty) \bigcap (-1, 2) = (0, 2) (0,+)(1,2)=(0,2) 的长度,分母是 (-1, 2) 的长度。


均匀分布的概率计算

X ∼ U ( a , b ) X\sim U(a,b) XU(a,b),则对于 ∀ I ⊂ R \forall I\subset R IR,有

方法一: P ( X ∈ I ) = ∫ I f ( x )   d x P(X\in I) = \int_I f(x) \, {\rm d}x P(XI)=If(x)dx

方法二: P ( X ∈ I ) = I ⋂ ( a , b ) 的 长 度 ( a , b ) 的 长 度 P(X\in I) = \cfrac{I\bigcap(a,b)的长度}{(a,b)的长度} P(XI)=(a,b)I(a,b)


指数分布的定义

X X X 的概率密度函数为

f ( x ) = { λ e − λ x , x > 0 ; 0 , x ≤ 0 , f(x)=\begin{cases} \lambda e^{-\lambda x}, & x>0; \\ 0, & x\leq 0, \end{cases} f(x)={λeλx,0,x>0;x0,

其中 λ > 0 \lambda > 0 λ>0,就称 X X X 服从参数为 λ \lambda λ 的指数分布( E x p o n e n t i a l \it Exponential Exponential),

记为 X ∼ E ( λ ) X\sim E(\lambda) XE(λ) X ∼ E x p ( λ ) X\sim Exp(\lambda) XExp(λ).

分布函数为

F ( x ) = { 1 − e − λ x , x > 0 ; 0 , x ≤ 0. F(x) = \begin{cases} 1 - e^{-\lambda x}, & x>0; \\ 0, & x\leq 0. \end{cases} F(x)={1eλx,0,x>0;x0.


性质:指数分布具有无记忆性

F ( x ) = { 1 − e − λ x , x > 0 ; 0 , x ≤ 0. F(x) = \begin{cases} 1 - e^{-\lambda x}, & x>0; \\ 0, & x\leq 0. \end{cases} F(x)={1eλx,0,x>0;x0.

对于 t 0 > 0 , t > 0 t_0 > 0, t>0 t0>0,t>0,

P ( X > t 0 + t ∣ X > t 0 ) = P ( X > t 0 + t , X > t 0 ) P ( X > t 0 = P ( X > t 0 + t ) P ( X > t 0 ) = 1 − F ( t 0 + t ) 1 − F ( t 0 ) = e − λ ( t 0 + t ) e − λ t 0 = e − λ t = P ( X > t ) \begin{aligned} P(X>t_0+t|X>t_0) &= \frac{P(X>t_0+t, X>t_0)}{P(X>t_0} \\ &= \cfrac{P(X>t_0+t)}{P(X>t_0)} = \cfrac{1-F(t_0+t)}{1-F(t_0)} \\ &= \cfrac{e^{-\lambda(t_0+t)}}{e^{-\lambda t_0}} = e^{-\lambda t} = P(X>t) \end{aligned} P(X>t0+tX>t0)=P(X>t0P(X>t0+t,X>t0)=P(X>t0)P(X>t0+t)=1F(t0)1F(t0+t)=eλt0eλ(t0+t)=eλt=P(X>t)


例 2: 设某人电话通话时间 X X X (分钟)服从指数分布,概率密度为

f ( x ) = { 1 15 e − x 15 , x > 0 ;   0 , x ≤ 0. f(x)=\begin{cases} \cfrac{1}{15} e^{-\frac{x}{15}}, &x>0; \\ \\ \,0, & x\leq 0. \end{cases} f(x)=151e15x,0,x>0;x0.

求:
(1)她的通话时间在 10~20 分钟之间的概率;
(2)若她已打了 10 分钟,求她继续通话超过 15 分钟的概率(即,若她已打了 10 分钟,求她总共通话超过 25 分钟的概率)

解:

由概率密度

f ( x ) = { 1 15 e − x 15 , x > 0 ;   0 , x ≤ 0. f(x)=\begin{cases} \cfrac{1}{15} e^{-\frac{x}{15}}, &x>0; \\ \\ \,0, & x\leq 0. \end{cases} f(x)=151e15x,0,x>0;x0.

得出分布函数为

F ( x ) = { 1 − e − x 15 , x > 0 ; 0 , x ≤ 0. F(x)=\begin{cases} 1-e^{-\frac{x}{15}}, &x>0; \\ \\ 0, &x\leq 0. \end{cases} F(x)=1e15x,0,x>0;x0.

(1)

P ( 10 < x < 20 ) = ∫ 10 20 f ( x )   d x = 1 15 ∫ 10 20 e − x 15   d x = e − 2 3 − e − 4 3 P(10P(10<x<20)=1020f(x)dx=1511020e15xdx=e32e34

或者利用分布函数

P ( 10 < X < 20 ) = F ( 20 ) − F ( 10 ) = 1 − e − 20 15 − ( 1 − e − 10 15 ) = e − 2 3 − e − 4 3 P(10P(10<X<20)=F(20)F(10)=1e1520(1e1510)=e32e34

(2)根据无记忆性,

P ( X > 25 ∣ X < 10 ) = P ( X > 15 ) = ∫ 15 ∞ 1 15 e − x 15   d x = e − 1 P(X>25|X<10)=P(X>15)=\int_{15}^{\infty} \cfrac{1}{15} e^{-\frac{x}{15}} \, {\rm d}x = e^{-1} P(X>25X<10)=P(X>15)=15151e15xdx=e1


例 3: 设一地段相邻两次交通事故的间隔时间(小时) X X X 服从参数为 2/13 的指数分布。求:已知在已过去的 13 小时中没有发生交通事故 ,那么在未来的 2 小时内不发生交通事故的概率。

解:

F ( x ) = { 1 − e − λ x , x > 0 ; 0 , x ≤ 0. F(x) = \begin{cases} 1 - e^{-\lambda x}, & x>0; \\ 0, & x\leq 0. \end{cases} F(x)={1eλx,0,x>0;x0.

已知 X ∼ E ( λ ) , λ = 2 / 13 X\sim E(\lambda), \lambda = 2/13 XE(λ),λ=2/13.

P ( X > 15 ∣ X > 13 ) = P ( X > 2 ) = 1 − F ( 2 ) = e − 2 13 ⋅ 2 = e − 4 13 P(X>15|X>13)=P(X>2)=1-F(2)=e^{-\frac{2}{13} ·2}=e^{-\frac{4}{13}} P(X>15X>13)=P(X>2)=1F(2)=e1322=e134


你可能感兴趣的:(概率论与数理统计,均匀分布,指数分布)