PaddleHub

  1.   PaddlePaddle中文译为“飞桨”,是百度公司于2016年正式开源开放,技术领先,功能完备的产业级深度学习平台。飞桨集深度学习核心框架,基础模型库,工具组件和服务平台于一体。飞桨起源于产业实践,目前飞桨已经广泛应用于工业,农业和服务业。飞桨深度学习框架基于编程逻辑的组网范式,对于普通的开发者来说更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能。在开源方面,飞桨在供给根本的框架源码的同时,还供给整体的解决筹划,融合机械范畴的相关经验,直接为开辟者供给跨行业的解决才能,可以更好的融合。PaddlePaddle的整体架构,主要是:多机并行架构、多 GPU 并行架构、Sequence 序列模型和大规模稀疏训练。飞桨突破了超大规模深度学习模型训练技术,实现了世界首个支持千亿特征、万亿参数、数百节点的开源大规模训练平台,攻克了超大规模深度学习模型的在线学习难题,实现了万亿规模参数模型的实时更新。PaddlePaddle拥有多端部署能力,支持服务器端、移动端等多种异构硬件设备的高速推理,预测性能有显著优势。 

       PaddleHub就是为了解决对深度学习模型的需求而开发的工具。它基于飞桨领先的核心框架,精选效果优秀的算法,提供了百亿级大数据训练的预训练模型,方便用户不用花费大量精力从头开始训练一个模型。PaddleHub可以便捷地获取这些预训练模型,完成模型的管理和一键预测。配合使用Fine-tune API,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用。

2.   Paddlehub的特色:

1、 通过PaddleHub,开发者可以便捷地获取飞桨生态下的所有预训练模型,涵盖了图像分类、目标检测、词法分析、语义模型、情感分析、语言模型、视频分类、图像生成八类主流模型40余个

2、PaddleHub引入了模型即软件的概念,通过Python API或者命令行工具,一键完成预训练模型地预测。此外还借鉴了Anaconda和pip软件包管理的理念设计了一套命令行接口。

3、通过PaddleHub Fine-tune API,结合少量代码即可完成大规模预训练模型的迁移学习。下面一节我们也会全面介绍PaddleHub的API。

 

2.Paddlehub的应用:

人脸检测 

 PaddleHub_第1张图片

图像分割 该PaddleHub Module使用百度自建数据集进行训练,可用于人像分割,支持任意大小的图片输入。

 PaddleHub_第2张图片

 

人体解析人体解析(Human Parsing)是细粒度的语义分割任务,其旨在识别像素级别的人类图像的组成部分(例如,身体部位和服装)

 PaddleHub_第3张图片

3.我的想法

我个人对图像分析比较感兴趣,这个暑假准备了解学习有关图像分析方面的知识。

 

你可能感兴趣的:(PaddleHub)