Cpp8 运算符重载和深浅拷贝
深浅拷贝
相同类型间可以直接拷贝
// _20180212.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include
#include
class A
{
private:
int* a;
public:
A()
{
a = new int[10];
}
virtual ~A()
{
delete a;
printf("析构 A \n");
}
};
int main(int argc,char* argv[])
{
A a1;
A a2;
a1 = a2;
return 0;
}
//反汇编
27: A a1;
0040108D lea ecx,[ebp-14h]
00401090 call @ILT+15(B::B) (00401014)
00401095 mov dword ptr [ebp-4],0
28: A a2;
0040109C lea ecx,[ebp-1Ch]
0040109F call @ILT+15(B::B) (00401014)
004010A4 mov byte ptr [ebp-4],1
29: a1 = a2;
004010A8 lea eax,[ebp-1Ch]
004010AB push eax //a2 作为参数传递
004010AC lea ecx,[ebp-14h] //a1 作为this指针传递
004010AF call @ILT+45(A::operator=) (00401032)
30: return 0;
A::operator=:
004012E0 push ebp
004012E1 mov ebp,esp
004012E3 sub esp,44h
004012E6 push ebx
004012E7 push esi
004012E8 push edi
004012E9 push ecx
004012EA lea edi,[ebp-44h]
004012ED mov ecx,11h
004012F2 mov eax,0CCCCCCCCh
004012F7 rep stos dword ptr [edi]
004012F9 pop ecx
//eax = a1首地址
004012FA mov dword ptr [ebp-4],ecx
004012FD mov eax,dword ptr [ebp-4]
//ecx = a2首地址
00401300 mov ecx,dword ptr [ebp+8]
//ecx + 4 这里是 class A中变量a的地址(ecx 对应虚表地址)
//因为ecx是变量a2 所以这里的edx = a2.a
00401303 mov edx,dword ptr [ecx+4]
//a2.a 赋值给a1.a
00401306 mov dword ptr [eax+4],edx
//返回a1首地址
00401309 mov eax,dword ptr [ebp-4]
0040130C pop edi
0040130D pop esi
0040130E pop ebx
0040130F mov esp,ebp
00401311 pop ebp
00401312 ret 4
我们发现使用=
直接赋值对象,编译器自动生成了operator=
函数用于处理类型赋值
我们观察编译器自动生成的函数operator=
,这里赋值直接略过了虚表(ecx+4)
// _20180212.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
#include
#include
class A
{
private:
int* a;
public:
A()
{
a = new int[10];
}
virtual ~A()
{
delete a;
printf("析构 A \n");
}
int* get_a()
{
return a;
}
};
int main(int argc,char* argv[])
{
A a1;
A* a2 = new A;
a1 = *a2;
delete a2;
int* i = a1.get_a();
for (int j =0;j<10;j++)
{
i[j] = j;
}
return 0;
}
上述代码看似正常,运行也不报错,原因是虽然delete a2;
释放掉了a2的内存,内存管理器虽然认为此内存无用,但是却仍然可以访问,所以这里是在非法使用内存
步骤分析
A a1;
A* A2 = new A;
此时a1和a2对应的内存占用如图
a1 = *a2;
这一步是无脑拷贝 把a2.a
赋值给 a1.a
此时的内存结构
这里 a指向的 int* a
就造成了内存泄漏
delete a2;
这里释放掉a2
内存结构如图
这里a2中的int* a
成员指向的内存已经释放,
但是此时a1的int* a
成员仍然指向a2的成员指向的内存
int* i = a1.get_a();
for (int j =0;j<10;j++)
{
i[j] = j;
}
这里调用get_a 方法 获取 a1.a的地址,把指向的内存赋值。
这里获取到的 int* i
指向的已经是个不存在的 非法的内存块
所以这里就造成了内存的非法访问,如果操作系统吧这里的位置分配给其他位置使用
那么就造成了数据混乱,造成比内存泄漏更危险的错误
以上的拷贝方式,就被称为浅拷贝
。
浅拷贝:只拷贝成员的值
深拷贝:拷贝的不只是成员。还有成员指向的内存的数据
所以在对象拥有指针成员的时候,就需要慎重考虑使用深拷贝还是浅拷贝
运算符重载
一个类,需要比较类的大小
class Number
{
public:
Number(int x,int y):x(x),y(y)
{
}
bool Max(Number& n)
{
return this->x>n.x && this->y>n.y;
}
private:
int x;
int y;
};
int main(int argc, char* argv[])
{
Number n1(1,1),n2(2,2);
bool r = n1.Max(n2);
return 0;
}
bool类型,其实就是一个char true是1 false是0
为了比较 n1和n2的大小。我们定义了一个max函数。此时我们写的时候有没有感觉很繁琐,那么我们能不能像基础类型那样使用 >这样的符号来做运算呢 比如
boolr = n1 > n2;
答案是可以的!
// _20180223.cpp : Defines the entry point for the console application.
//
#include "stdafx.h"
class Number
{
public:
Number(int x,int y):x(x),y(y)
{
}
bool operator>(Number& n)
{
return this->x>n.x && this->y>n.y;
}
private:
int x;
int y;
};
int main(int argc, char* argv[])
{
Number n1(1,1),n2(2,2);
bool r = n1 > (n2);
return 0;
}
重载 ++ -- + - * / > <
等等运算符
class Number
{
public:
Number(int x,int y):x(x),y(y)
{
}
Number operator++();
Number operator--();
Number operator+(const Number& p);
Number operator-(const Number& p);
Number operator*(const Number& p);
Number operator/(const Number& p);
bool operator<(const Number& p);
bool operator==(const Number& p);
bool operator>(const Number& n)
{
return this->x>n.x && this->y>n.y;
}
private:
int x;
int y;
};
int main(int argc, char* argv[])
{
Number n1(1,1),n2(2,2);
bool r = n1 > (n2);
return 0;
}