PHYS104: Advanced Mechanics

Catalog

    • Calculus of Variation
      • Concept
      • Newton's Second Law
      • Stationary Point
      • Variation
      • Properties of Variation
      • Euler-Lagrange Equation
        • Book's Method
        • Lagrange's Method (1755)
        • Euler's Method (1756)
        • Beltrami's Identity
      • Examples
    • Lagrangian Mechanics
      • Lagrangian
      • Generalized Coordinate
      • Lagrange Equation and Hamilton's Principle
      • Constraint System
        • Lagrange Multiplier
      • Symmetry
        • Symmetry in Space
        • Symmetry in Time
      • Electro-Magnetic Modification
    • Non-Inertia Frame of Reference
      • Translational Motion
      • Tidal Motion
      • Rotational Motion
      • Newton's Second Law in non-inertial frame
      • Foucalt Pendulum
    • Rigid Body Motion
      • Tensor of Inertia
      • Principle Axis
      • The Euler's Equations
      • Types of Rigid Body
      • Euler's Angle
    • Hamiltonian Dynamics
      • Legendre Transformation
      • Hamiltonian
      • Dynamics
      • Lagrangian from Hamiltonian
      • Continuity Equation
      • Liouville's Theorem
      • Material Derivative
      • Fluid Dynamic
      • Emmy Neother's Theorem

Calculus of Variation

Concept

  • function: mapping number to number. Ex. y = f ( x ) y=f(x) y=f(x)
  • operator: mapping function to function. Ex. d d x \frac{d}{dx} dxd
  • functional: mapping function to number. Ex. m a x ( f ( x ) = x 2 ) max(f(x) = x^2) max(f(x)=x2)

Newton’s Second Law

F = m a \bm{F} = m\bm{a} F=ma, is essentially stating a ordinary differential equation
r ¨ = f ( t , r , r ˙ ) \ddot\bm{r} = f(t,\bm{r},\bm{\dot r}) r¨=f(t,r,r˙)
which has two degrees of freedom r ( 0 ) \bm{r}(0) r(0) and r ˙ ( 0 ) \bm{\dot r}(0) r˙(0)

Stationary Point

For f ( x ) f(x) f(x): d f = 0 df = 0 df=0 for any d x dx dx. Since d f = f ′ d x df = f'dx df=fdx, we have f ′ = 0 f' = 0 f=0.
For multi-variable function F ( x 1 , x 2 , ⋯   , x n ) F(x_1, x_2, \cdots, x_n) F(x1,x2,,xn),
d F = ∇ F ⋅ ( d x 1 , d x 2 , ⋯   , d x n ) T = 0 dF = \nabla F \cdot (dx_1, dx_2, \cdots, dx_n)^T = 0 dF=F(dx1,dx2,,dxn)T=0
Change variable d x i = η i d α dx_i = \eta_id\alpha dxi=ηidα
d F = d α ∑ i = 1 n ∂ F ∂ x i η i = 0 dF = d\alpha \sum_{i=1}^{n}\frac{\partial F}{\partial x_i}\eta_i = 0 dF=dαi=1nxiFηi=0
Since d x i dx_i dxi is arbitrary, η i \eta_i ηi is also arbitrary. For the j t h j^{th} jth term, select η i = 0 , i ≠ j \eta_i = 0, i\neq j ηi=0,i=j and η j = 0 \eta_j = 0 ηj=0, we can obtain
∂ F ∂ x i = 0 , ∀ i \frac{\partial F}{\partial x_i} = 0, \forall i xiF=0,i

Variation

  • Virtual Displacement: An imagined displacement with no time change, denoted as δ x \delta x δx. Ex. the δ y \delta y δy in the graph.
  • Virtual Path: an imagined path which is different from the right path. Ex. the pink path on the graph.
    PHYS104: Advanced Mechanics_第1张图片
    Change variable: δ y ( x ) = η ( x ) d α \delta y(x) = \eta(x)d\alpha δy(x)=η(x)dα, so that
    Y ( x ) = y ( x ) + δ y ( x ) = y ( x ) + α η ( x ) Y(x) = y(x) + \delta y(x) = y(x) + \alpha\eta(x) Y(x)=y(x)+δy(x)=y(x)+αη(x)

Properties of Variation

δ F = F ( x 1 + δ x 1 , x 2 + δ x 2 , ⋯   , x n + δ x n ) − F ( x 1 , x 2 , ⋯   , x n ) \delta F = F(x_1+\delta x_1, x_2+\delta x_2, \cdots, x_n+\delta x_n) - F(x_1, x_2, \cdots, x_n) δF=F(x1+δx1,x2+δx2,,xn+δxn)F(x1,x2,,xn)
δ F = ∇ F ⋅ ( δ x 1 , δ x 2 , ⋯   , δ x n ) T \delta F = \nabla F\cdot (\delta x_1, \delta x_2, \cdots, \delta x_n)^T δF=F(δx1,δx2,,δxn)T
δ ( d d x y ) = d d x ( δ y ) \delta(\frac{d}{dx}y) = \frac{d}{dx}(\delta y) δ(dxdy)=dxd(δy)
δ ∫ a b f d x = ∫ a b δ f d x \delta\int_a^bfdx = \int_a^b\delta fdx δabfdx=abδfdx

Euler-Lagrange Equation

Find the right path making the following integral stationary, with start point and end point fixed.
I = ∫ a b f ( y , y ′ , x ) d x I = \int_a^b f(y,y',x)dx I=abf(y,y,x)dx

Book’s Method

I I I is only dependent on α \alpha α and it is stationary at α = 0 , Y ( x ) = y ( x ) \alpha = 0, Y(x) = y(x) α=0,Y(x)=y(x), therefore
d I d α ∣ α = 0 = ∫ a b ∂ f ( y , y ′ , x ) ∂ α d x = 0 \frac{dI}{d\alpha}\Big|_{\alpha=0} = \int_a^b\frac{\partial f(y,y',x)}{\partial\alpha}dx = 0 dαdIα=0=abαf(y,y,x)dx=0
Apply the chain rule
∫ a b ( ∂ f ∂ y ∂ y ∂ α + ∂ f ∂ y ′ ∂ y ′ ∂ α ) d x = ∫ a b ( ∂ f ∂ y η + ∂ f ∂ y ′ η ′ ) d x = 0 \int_a^b(\frac{\partial f}{\partial y}\frac{\partial y}{\partial\alpha} + \frac{\partial f}{\partial y'}\frac{\partial y'}{\partial\alpha})dx = \int_a^b(\frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta')dx = 0 ab(yfαy+yfαy)dx=ab(yfη+yfη)dx=0
Treat the second term in the integral with the Law of Integral by Parts
∫ a b ∂ f ∂ y ′ η ′ d x = ∂ f ∂ y ′ η ′ ( x ) ∣ a b − ∫ a b η d d x ∂ f ∂ y ′ d x \int_a^b \frac{\partial f}{\partial y'}\eta'dx = \frac{\partial f}{\partial y'}\eta'(x)\Big|_a^b - \int_a^b\eta\frac{d}{dx}\frac{\partial f}{\partial y'}dx abyfηdx=yfη(x)ababηdxdyfdx
Since the start point and end point are fixed, the variation η ( x 1 ) = η ( x 2 ) = 0 \eta(x_1) = \eta(x_2) = 0 η(x1)=η(x2)=0, so the first term will vanish. Take the second term back into d I d α \frac{dI}{d\alpha} dαdI
d I d α ∣ α = 0 = ∫ a b η ( x ) ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) d x = 0 , ∀ η ( x ) \frac{dI}{d\alpha}\Big|_{\alpha=0} = \int_a^b\eta(x)(\frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'})dx = 0, \quad \forall \eta(x) dαdIα=0=abη(x)(yfdxdyf)dx=0,η(x)
Therefore, we get the Lagrange Equation
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 yfdxdyf=0

Lagrange’s Method (1755)

δ I = I ( α ) − I ( 0 ) = ∫ a b δ f ( y , y ′ , x ) d x \delta I = I(\alpha) - I(0) = \int_a^b \delta f(y,y',x)dx δI=I(α)I(0)=abδf(y,y,x)dx
∵ δ x = 0 ∴ δ f = ∂ f ∂ y δ y + ∂ f ∂ y ′ δ y ′ \because \delta x = 0 \quad \therefore \delta f = \frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial y'}\delta y' δx=0δf=yfδy+yfδy
Use the change of variable for δ y \delta y δy
d δ f d α = ∂ f ∂ y η + ∂ f ∂ y ′ η ′ \frac{d\delta f}{d\alpha} = \frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta' dαdδf=yfη+yfη
Take back to the integral. And for the stationary right path, δ I \delta I δI should be zero for all infinitesimal d α d\alpha dα.
d δ I d α = ∫ a b ( ∂ f ∂ y η + ∂ f ∂ y ′ η ′ ) d x = 0 \frac{d\delta I}{d\alpha} = \int_a^b(\frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta')dx = 0 dαdδI=ab(yfη+yfη)dx=0
Use the same technique as in the Book’s Method, we can get the Euler-Lagrange Equation
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 yfdxdyf=0

Euler’s Method (1756)

Make partition between x 0 x_0 x0 and x n x_n xn, with h = x j − x j − 1 = ( b − a ) / n h = x_j - x_{j-1} = (b-a)/n h=xjxj1=(ba)/n. y 1 , y 2 , ⋯   , y n − 1 y_1, y_2, \cdots, y_{n-1} y1,y2,,yn1 are unknown variables.

By definition of Rieman Sum,
I = lim ⁡ n → ∞ S n = lim ⁡ n → ∞ ∑ j = 1 n f ( y j , y j ′ , x j ) h I = \lim_{n\to \infin}S_n =\lim_{n\to \infin}\sum_{j=1}^nf(y_j,y'_j,x_j)h I=nlimSn=nlimj=1nf(yj,yj,xj)h
By definition of derivatives y j ′ = ( y j − y j − 1 ) / h y'_j = (y_j - y_{j-1})/h yj=(yjyj1)/h. Therefore the Rieman Sum is only function of y j , j ∈ { 1 , ⋯   , n } y_j, \quad j\in\{1,\cdots,n\} yj,j{1,,n}

For stationary I I I,
∂ S ∂ y k = 0 , ∀ k ∈ { 1 , ⋯   , n } \frac{\partial S}{\partial y_k} = 0, \quad \forall k\in \{1,\cdots,n\} ykS=0,k{1,,n}
only two terms ( k t h k^{th} kth and ( k + 1 ) t h (k+1)^{th} (k+1)th) are involved. Apply chain rule
∂ S ∂ y k = h ( ∂ f ( y k , y k ′ , x k ) ∂ y k + ∂ f ( y k , y k ′ , x k ) ∂ y k ′ y k ′ y k + ∂ f ( y k + 1 , y k + 1 ′ , x k + 1 ) ∂ y k + 1 ′ y k + 1 ′ y k ) = h ( ∂ f ∂ y k ∣ k + 1 h ∂ f ∂ y ′ ∣ k − 1 h ∂ f ∂ y ′ ∣ k + 1 ) = h ( ∂ f ∂ y k ∣ k − ∂ f ∂ y ′ ∣ k + 1 − ∂ f ∂ y ′ ∣ k h ) \begin{aligned} \frac{\partial S}{\partial y_k} &= h(\frac{\partial f(y_k,y'_k,x_k)}{\partial y_k} + \frac{\partial f(y_k,y'_k,x_k)}{\partial y'_k}\frac{y'_k}{y_k} + \frac{\partial f(y_{k+1},y'_{k+1},x_{k+1})}{\partial y'_{k+1}}\frac{y'_{k+1}}{y_k}) \\ &= h(\frac{\partial f}{\partial y_k}\Big|_k + \frac{1}{h}\frac{\partial f}{\partial y'}\Big|_k - \frac{1}{h}\frac{\partial f}{\partial y'}\Big|_{k+1}) \\ &= h(\frac{\partial f}{\partial y_k}\Big|_k - \frac{\frac{\partial f}{\partial y'}\Big|_{k+1} - \frac{\partial f}{\partial y'}\Big|_k}{h}) \end{aligned} ykS=h(ykf(yk,yk,xk)+ykf(yk,yk,xk)ykyk+yk+1f(yk+1,yk+1,xk+1)ykyk+1)=h(ykfk+h1yfkh1yfk+1)=h(ykfkhyfk+1yfk)
As it is for all k k k, we can conclude that
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 yfdxdyf=0

Beltrami’s Identity

d f d x = ∂ f ∂ y y ′ + ∂ f ∂ y ′ d y ′ d x + ∂ f ∂ x = d d x ( ∂ f ∂ y ′ ) y ′ + ∂ f ∂ y ′ d y ′ d x + ∂ f ∂ x \frac{df}{dx} = \frac{\partial f}{\partial y}y' + \frac{\partial f}{\partial y'}\frac{dy'}{dx} + \frac{\partial f}{\partial x} = \frac{d}{dx}(\frac{\partial f}{\partial y'})y' + \frac{\partial f}{\partial y'}\frac{dy'}{dx} + \frac{\partial f}{\partial x} dxdf=yfy+yfdxdy+xf=dxd(yf)y+yfdxdy+xf
∂ f ∂ x = d f d x − d d x ( ∂ f ∂ y ′ y ′ ) = d d x ( f − ∂ f ∂ y ′ y ′ ) \frac{\partial f}{\partial x} = \frac{df}{dx} - \frac{d}{dx}(\frac{\partial f}{\partial y'}y') = \frac{d}{dx}(f-\frac{\partial f}{\partial y'}y') xf=dxdfdxd(yfy)=dxd(fyfy)
when f f f is independent of x x x, we have the Beltrami’s Identity:
f − ∂ f ∂ y ′ y ′ = c o n s t a n t f-\frac{\partial f}{\partial y'}y' = constant fyfy=constant

Examples

Length of the curve on a plane
I = ∫ l d l = ∫ l 1 + y ′ 2 d x I = \int_l dl = \int_l\sqrt{1+y'^2}dx I=ldl=l1+y2 dx
Take into the Euler-Lagrange Equation
0 = d d x y ′ 1 + y ′ 2 = y ′ ′ 1 + y ′ 2 − y ′ 2 y ′ ′ 1 + y ′ 2 1 + y ′ 2 = y ′ ′ ( 1 + y ′ 2 ) − y ′ 2 y ′ ′ ( 1 + y ′ 2 ) 3 / 2 0=\frac{d}{dx}\frac{y'}{\sqrt{1+y'^2}} = \frac{y''\sqrt{1+y'^2}-\frac{y'^2y''}{\sqrt{1+y'^2}}}{1+y'^2} = \frac{y''(1+y'^2)-y'^2y''}{(1+y'^2)^{3/2}} 0=dxd1+y2 y=1+y2y1+y2 1+y2 y2y=(1+y2)3/2y(1+y2)y2y
Which implies y ′ ′ = 0 y'' = 0 y=0. Thus, the path that makes the length between two given point shortest is a segment of a line.

Brachistochrone
Under gravity g g g, figure out the path x = x ( y ) x=x(y) x=x(y) between given points a and b, such that an object falls with the shortest time.
T = ∫ a b d l v = ∫ a b x ′ 2 + 1 2 g y d y = 1 2 g ∫ a b x ′ 2 + 1 y d y T = \int_a^b\frac{dl}{v} = \int_a^b\frac{\sqrt{x'^2+1}}{\sqrt{2gy}}dy = \frac{1}{\sqrt{2g}}\int_a^b\sqrt{\frac{x'^2+1}{y}}dy T=abvdl=ab2gy x2+1 dy=2g 1abyx2+1 dy
Take into the Euler-Lagrange Equation (independent variable is y)
0 = d d y x ′ x ′ 2 + 1 y 0 = \frac{d}{dy}\frac{x'}{\sqrt{x'^2+1}\sqrt{y}} 0=dydx2+1 y x
So that we can find the part within the derivative should be a constant. For convenience, square it and denote it as
x ′ 2 y ( x ′ 2 + 1 ) = 1 2 a \frac{x'^2}{y(x'^2+1)} = \frac{1}{2a} y(x2+1)x2=2a1
Make a transformation
x ′ = y 2 a − y x' = \sqrt{\frac{y}{2a-y}} x=2ayy
Make substitution y = α ( 1 − cos ⁡ θ ) y = \alpha(1-\cos\theta) y=α(1cosθ) and integrate. Without loss of generallity, fix initial point at ( 0 , 0 ) (0,0) (0,0), we get
x = α ( θ − sin ⁡ θ ) x=\alpha(\theta-\sin\theta) x=α(θsinθ)
Which is exactly the parametric funtion for cycloid.

Lagrangian Mechanics

Lagrangian

Sometimes for system with conservation of energy and all potential force, we can obtain the equation of motion by d E d t = 0 \frac{dE}{dt} = 0 dtdE=0. But with multiple degrees of freedom, this cannot work, which requires further technique.

D’Alembert’s Principle

In dynamics, F − m a = 0 \bm{F} - m\bm{a} = \bm{0} Fma=0. For virtual work δ W = ( F − m a ) ⋅ δ r = 0 \delta W = (\bm{F} - m\bm{a})\cdot\delta\bm{r} = 0 δW=(Fma)δr=0
∫ t 1 t 2 δ W d t = ∫ t 1 t 2 [ F − d d t ( m v ) ] δ r d t \int_{t_1}^{t_2}\delta Wdt = \int_{t_1}^{t_2}[\bm{F}-\frac{d}{dt}(m\bm{v})]\delta\bm{r}dt t1t2δWdt=t1t2[Fdtd(mv)]δrdt
For potential forces,
∫ t 1 t 2 F ⋅ δ r d t = − δ ∫ t 1 t 2 U d t \int_{t_1}^{t_2}\bm{F}\cdot\delta\bm{r}dt = -\delta\int_{t_1}^{t_2}Udt t1t2Fδrdt=δt1t2Udt
For fixed initial and final problems, we have δ r ( t 1 ) = δ r ( t 2 ) = 0 \delta\bm{r}(t_1) = \delta\bm{r}(t_2) = 0 δr(t1)=δr(t2)=0. Thus
− ∫ t 1 t 2 d d t ( m v ) δ r d t = − m v δ r ∣ t 1 t 2 + ∫ t 1 t 2 m v d d t ( δ r ) d t = ∫ t 1 t 2 m v δ v d t -\int_{t_1}^{t_2}\frac{d}{dt}(m\bm{v})\delta\bm{r}dt = -m\bm{v}\delta\bm{r}\Big|_{t_1}^{t_2} + \int_{t_1}^{t_2}m\bm{v}\frac{d}{dt}(\delta\bm{r})dt = \int_{t_1}^{t_2}m\bm{v}\delta\bm{v}dt t1t2dtd(mv)δrdt=mvδrt1t2+t1t2mvdtd(δr)dt=t1t2mvδvdt

Note: δ ( x 2 ) = 2 x δ x \delta(x^2) = 2x\delta x δ(x2)=2xδx

− ∫ t 1 t 2 d d t ( m v ) δ r d t = δ ∫ t 1 t 2 m v 2 2 d t = δ ∫ t 1 t 2 T d t -\int_{t_1}^{t_2}\frac{d}{dt}(m\bm{v})\delta\bm{r}dt = \delta\int_{t_1}^{t_2}\frac{m\bm{v}^2}{2}dt = \delta\int_{t_1}^{t_2}Tdt t1t2dtd(mv)δrdt=δt1t22mv2dt=δt1t2Tdt
Take them back into ∫ t 1 t 2 δ W d t \int_{t_1}^{t_2}\delta Wdt t1t2δWdt, we have
∫ t 1 t 2 δ W d t = δ ∫ t 1 t 2 ( T − U ) d t = 0 \int_{t_1}^{t_2}\delta Wdt = \delta\int_{t_1}^{t_2}(T-U)dt = 0 t1t2δWdt=δt1t2(TU)dt=0
Define Lagrangian as
L = T − U \mathcal{L} = T-U L=TU
Define Action as
A = S = ∫ t 1 t 2 L d t \mathcal{A} = \mathcal{S} = \int_{t_1}^{t_2}\mathcal{L}dt A=S=t1t2Ldt

Generalized Coordinate

In Multi-objects system with multiple degree of freedom, Lagrangian may take the form of
L = L ( q 1 , q ˙ 1 , q 2 , q ˙ 2 , ⋯   , q n , q ˙ n , t ) \mathcal{L} = \mathcal{L}(q_1, \dot q_1, q_2, \dot q_2, \cdots, q_n, \dot q_n, t) L=L(q1,q˙1,q2,q˙2,,qn,q˙n,t)
in which q 1 , q 2 , ⋯   , q n q_1, q_2, \cdots, q_n q1,q2,,qn are generalized coordinates.

Each position vector is a function of generalized coordinates and maybe time
r a = r a ( q 1 , q 2 , ⋯   , q n , t ) \bm{r}_a = \bm{r}_a(q_1, q_2, \cdots, q_n, t) ra=ra(q1,q2,,qn,t)

  • Scleronomic: r \bm{r} r is not time-dependent (nature).
  • Rheonomic: r \bm{r} r is time-dependent (not nature).
  • Holonomic: The degree of freedom is the same as the number of coordinates needed to describe the system.
  • Nonholonomic: Ex. a ball rolls without sliding on a plane has 2 degree of freedom, but its orientation changes are not same when rolling along different paths.

For j ∈ { 1 , ⋯   , n } j\in\{1,\cdots,n\} j{1,,n}, define
Generalized   Momentum:   P j = ∂ L ∂ q ˙ j \textbf{Generalized Momentum: } \mathcal{P_j} = \frac{\partial\mathcal{L}}{\partial\dot q_j} Generalized Momentum: Pj=q˙jL
Generalized   Force:   Q j = ∂ L ∂ q j \textbf{Generalized Force: } \mathcal{Q_j} = \frac{\partial\mathcal{L}}{\partial q_j} Generalized Force: Qj=qjL

Lagrange Equation and Hamilton’s Principle

D’Alembert’s Principle implies that the action
A = ∫ t 1 t 2 L d t \mathcal{A} = \int_{t_1}^{t_2}\mathcal{L}dt A=t1t2Ldt
should be stationary, which is called Hamilton’s Principle.

Apply the Euler-Lagrange Equation, we can obtain the Lagrange Equation
∂ L ∂ q j − d d t ∂ L ∂ q ˙ j \frac{\partial\mathcal{L}}{\partial q_j} - \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j} qjLdtdq˙jL

Constraint System

Sometimes the system is constraint, like on some surface. For a virtual path from t 1 t_1 t1 to t 2 t_2 t2.
R ( t ) = r ( t ) + ϵ ( t ) , ϵ ( t 1 ) = ϵ ( t 2 ) = 0 \bm{R}(t) = \bm{r}(t) + \bm{\epsilon}(t), \quad \bm{\epsilon}(t_1) = \bm{\epsilon}(t_2) = 0 R(t)=r(t)+ϵ(t),ϵ(t1)=ϵ(t2)=0
ϵ ( t ) \bm{\epsilon}(t) ϵ(t) is infinitesimal variation in the constraint surface. Therefore,
δ L = 1 2 m [ ( r ˙ + ϵ ˙ ) 2 − r ˙ 2 ] − [ U ( r + ϵ , t ) − U ( r , t ) ] = 1 2 m ( 2 ϵ ˙ r ˙ + ϵ ˙ 2 ) − ( ∇ U ⋅ ϵ + O ( ϵ 2 ) ) \begin{aligned} \delta\mathcal{L} &= \frac{1}{2}m[(\bm{\dot r}+\bm{\dot \epsilon})^2-\bm{\dot r}^2] - [U(\bm{r}+\bm{\epsilon},t)-U(\bm{r},t)] \\ &= \frac{1}{2}m(2\bm{\dot \epsilon}\bm{\dot r}+\bm{\dot \epsilon}^2) - (\nabla U\cdot\bm{\epsilon}+O(\bm{\epsilon}^2)) \end{aligned} δL=21m[(r˙+ϵ˙)2r˙2][U(r+ϵ,t)U(r,t)]=21m(2ϵ˙r˙+ϵ˙2)(Uϵ+O(ϵ2))
Omit all the higher order terms for infinitesimal variation ϵ ( t ) \bm{\epsilon}(t) ϵ(t), and note that − ∇ U -\nabla U U is the non-conservative potential force F F F of the system. Thus, we have δ L = m ϵ ˙ r ˙ − F ⋅ ϵ \delta\mathcal{L} = m\bm{\dot \epsilon}\bm{\dot r} - \bm{F}\cdot\bm{\epsilon} δL=mϵ˙r˙Fϵ

Hence, for the Action of the system
δ A = ∫ t 1 t 2 δ L d t = ∫ t 1 t 2 ( m ϵ ˙ r ˙ − F ⋅ ϵ ) d t = m r ˙ ϵ ( t ) ∣ t 1 t 2 − ϵ ∫ t 1 t 2 ( m r ¨ − F ) d t \begin{aligned} \delta\mathcal{A} &= \int_{t_1}^{t_2}\delta\mathcal{L}dt = \int_{t_1}^{t_2}(m\bm{\dot \epsilon}\bm{\dot r} - \bm{F}\cdot\bm{\epsilon})dt \\ &= m\bm{\dot r}\bm{\epsilon}(t)\Big|_{t_1}^{t_2} - \bm{\epsilon}\int_{t_1}^{t_2}(m\ddot\bm{r} - F)dt \\ \end{aligned} δA=t1t2δLdt=t1t2(mϵ˙r˙Fϵ)dt=mr˙ϵ(t)t1t2ϵt1t2(mr¨F)dt
The first term is zero due to the boundary condition. The second term is equivalent to F n e t − F \bm{F}_{net} - \bm{F} FnetF which is the constraint force of the system. As the constraint force is perpendicular to the surface. So ϵ ⋅ ( F n e t − F ) \bm{\epsilon}\cdot(\bm{F}_{net} - \bm{F}) ϵ(FnetF) is zero as well.

Therefore, we have proved that for the constraint system the action is stationary.

Lagrange Multiplier

In the proof above, we assume that the generalized coordinates follows the contraint conditions. Ex. in simple pendulum, fix the length of the string and use θ \theta θ represents the only degree of freedom. However, when constraint condition takes the form of constraint equation, we have to modify the Lagrange Equation with Lagrange Multiplier.

If there is serveral constraint ϕ k ( q 1 , q 2 , ⋯   , q n ) = 0 \phi_k(q_1,q_2,\cdots,q_n) = 0 ϕk(q1,q2,,qn)=0, then the Lagrange Equation is modified as
∂ L ∂ q j − d d t ∂ L ∂ q ˙ j + ∑ k λ k ∂ ϕ k ∂ q j = 0 \frac{\partial\mathcal{L}}{\partial q_j}-\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j} + \sum_k\lambda_k\frac{\partial\phi_k}{\partial q_j} = 0 qjLdtdq˙jL+kλkqjϕk=0

Interestingly, in this modified Lagrange Equation, λ k ∂ ϕ k ∂ q j \lambda_k\frac{\partial\phi_k}{\partial q_j} λkqjϕk is the contraint force in the particular coordinate q j q_j qj.

Symmetry

Following two aspects of symmetry is known as Emmy Neother theorem (1915), which indicates that when action doesn’t change symmetry leads to conservation law.

Symmetry in Space

If we move every particle in a system by δ x \delta x δx and the Lagrangian doesn’t change, the system is symmetric in space.

δ L = ∑ ∂ L ∂ x ˙ a δ x ˙ + ∑ ∂ L ∂ x a δ x = ∑ ∂ L ∂ x a δ x \delta \mathcal{L} = \sum\frac{\partial\mathcal{L}}{\partial\dot x_a}\dot{\delta x} + \sum\frac{\partial\mathcal{L}}{\partial x_a}\delta x = \sum\frac{\partial\mathcal{L}}{\partial x_a}\delta x δL=x˙aLδx˙+xaLδx=xaLδx

Use the Lagrange Equation, we have
δ L δ x = ∑ ( d d t ∂ L ∂ x ˙ a ) = d d t ( ∑ P a ) = 0 \frac{\delta\mathcal{L}}{\delta x} = \sum(\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot x_a}) = \frac{d}{dt}(\sum\mathcal{P}_a) = 0 δxδL=(dtdx˙aL)=dtd(Pa)=0

Therefore, the total generalized momentum is constant.

Symmetry in Time

If the Lagrangian is not time-dependent

d L = ∑ ∂ L ∂ q ˙ j d q ˙ j + ∑ ∂ L ∂ q j d q j + ∂ L ∂ t d t d\mathcal{L} = \sum\frac{\partial\mathcal{L}}{\partial\dot q_j}d\dot q_j + \sum\frac{\partial\mathcal{L}}{\partial q_j}dq_j + \frac{\partial\mathcal{L}}{\partial t}dt dL=q˙jLdq˙j+qjLdqj+tLdt

Use the Lagrange Equation in the second term, we have
− ∂ L ∂ t = ∑ ( ∂ L ∂ q ˙ j d q ˙ j d t + d d t ∂ L ∂ q ˙ j q ˙ j ) − d L d t = d d t ( ∑ ∂ L ∂ q ˙ j q ˙ j − L ) = 0 -\frac{\partial\mathcal{L}}{\partial t} = \sum(\frac{\partial\mathcal{L}}{\partial\dot q_j}\frac{d\dot q_j}{dt} + \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j) - \frac{d\mathcal{L}}{dt} = \frac{d}{dt}(\sum\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j - \mathcal{L}) = 0 tL=(q˙jLdtdq˙j+dtdq˙jLq˙j)dtdL=dtd(q˙jLq˙jL)=0

Define Hamiltonian as
H = ∑ ∂ L ∂ q ˙ j q ˙ j − L \mathcal{H} = \sum\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j - \mathcal{L} H=q˙jLq˙jL

If every object has a position vector independent from time, T T T is a second order homogeneous function for q ˙ 1 , q ˙ 2 , ⋯   , q ˙ n \dot q_1, \dot q_2, \cdots, \dot q_n q˙1,q˙2,,q˙n

If function f ( x 1 , x 2 , ⋯   , x n ) f(x_1, x_2, \cdots, x_n) f(x1,x2,,xn) has the property
f ( k x 1 , k x 2 , ⋯   , k x n ) = k n f ( x 1 , x 2 , ⋯   , x n ) f(kx_1, kx_2, \cdots, kx_n) = k^nf(x_1, x_2, \cdots, x_n) f(kx1,kx2,,kxn)=knf(x1,x2,,xn)
Then it is called homogeneous function with the order of n n n. And it’s proved that for this function
∑ ∂ f ∂ x j x j = n f ( x 1 , x 2 , ⋯   , x n ) \sum\frac{\partial f}{\partial x_j}x_j = nf(x_1, x_2, \cdots, x_n) xjfxj=nf(x1,x2,,xn)

H = ∑ ∂ T ∂ q ˙ j q ˙ j − L = 2 T − T + U = E \mathcal{H} = \sum\frac{\partial T}{\partial\dot q_j}\dot q_j - \mathcal{L} = 2T - T + U = E H=q˙jTq˙jL=2TT+U=E

Which implies the conservation of energy.

Electro-Magnetic Modification

m a = q ( E + v × B ) m\bm{a} = q(\bm{E}+\bm{v}\times\bm{B}) ma=q(E+v×B)
L = 1 2 m v 2 − q ( ϕ − v ⋅ A ) \mathcal{L} = \frac{1}{2}m\bm{v}^2 - q(\phi - \bm{v}\cdot\bm{A}) L=21mv2q(ϕvA)

Non-Inertia Frame of Reference

Translational Motion

The unit vectors don’t change. Thus, r = r o ′ + r ′ \bm{r} = \bm{r}_{o'} + \bm{r}' r=ro+r
Get time derivative of both sides, a = a o ′ + a ′ \bm{a} = \bm{a}_{o'} + \bm{a}' a=ao+a Therefore, we have the Newton’s Second Law with the Inertial Force or Frictional Force
∑ F − m a o ′ = m a ′ \sum{\bm{F}} - m\bm{a}_{o'} = m\bm{a}' Fmao=ma

Tidal Motion

Ignore the rotation of the Earth.
PHYS104: Advanced Mechanics_第2张图片
Take the Earth as the Frame of Reference

m r ¨ = ∑ F − m a o ′ = m g − G M m m s 2 s ^ + G M m m L 2 L ^ + F o t h e r m\ddot\bm{r} = \sum\bm{F}-m\bm{a}_{o'} = m\bm{g} - G\frac{M_mm}{s^2}\bm{\hat{s}} + G\frac{M_mm}{L^2}\bm{\hat{L}} + \bm{F}_{other} mr¨=Fmao=mgGs2Mmms^+GL2MmmL^+Fother

In which the third term is the inertial force. And we define
F t i d a l = − G M m m s 2 s ^ + G M m m L 2 L ^ F_{tidal} = - G\frac{M_mm}{s^2}\bm{\hat{s}} + G\frac{M_mm}{L^2}\bm{\hat{L}} Ftidal=Gs2Mmms^+GL2MmmL^
The inertial force has fixed direction and fixed magnitude, so it is potential. Thus, all the potential energy:
U L = − G M m m L 2 x = − G M m m L 2 R cos ⁡ ϕ U g = m g h ( ϕ ) U s = − G M m m s ∴    U m = − G M m s − G M m L 2 R cos ⁡ ϕ + g h ( ϕ ) \begin{aligned} &U_L = -G\frac{M_mm}{L^2}x = -G\frac{M_mm}{L^2}R\cos\phi \\ &U_g = mgh(\phi) \\ &U_s = -G\frac{M_mm}{s} \\ \therefore\; &\frac{U}{m} = -G\frac{M_m}{s}-G\frac{M_m}{L^2}R\cos\phi+gh(\phi) \end{aligned} UL=GL2Mmmx=GL2MmmRcosϕUg=mgh(ϕ)Us=GsMmmmU=GsMmGL2MmRcosϕ+gh(ϕ)
With Law of Cosine and Taylor Expansion
1 s = 1 L ( 1 + ( R L ) 2 + 2 ( R L ) cos ⁡ ϕ ) − 1 2 = 1 L { 1 + ( − 1 2 ) [ ( R L ) 2 + 2 ( R L ) cos ⁡ ϕ ] + 3 8 [ ( R L ) 2 + 2 ( R L ) cos ⁡ ϕ ] 2 } = 1 L { 1 − 1 2 ( R L ) 2 − ( R L ) cos ⁡ ϕ + 3 2 ( R L ) 2 cos ⁡ 2 ϕ + O ( R L ) 3 } \begin{aligned} \frac{1}{s} &= \frac{1}{L}(1+(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi)^{-\frac{1}{2}} \\ &= \frac{1}{L}\Big\{ 1+(-\frac{1}{2})\big[(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi\big] + \frac{3}{8}\big[(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi\big]^2 \Big\} \\ &= \frac{1}{L}\Big\{ 1-\frac{1}{2}(\frac{R}{L})^2 - (\frac{R}{L})\cos\phi + \frac{3}{2}(\frac{R}{L})^2\cos^2\phi + O(\frac{R}{L})^3 \Big\} \end{aligned} s1=L1(1+(LR)2+2(LR)cosϕ)21=L1{1+(21)[(LR)2+2(LR)cosϕ]+83[(LR)2+2(LR)cosϕ]2}=L1{121(LR)2(LR)cosϕ+23(LR)2cos2ϕ+O(LR)3}
Take this back into U m \frac{U}{m} mU, which should be a constant for the surface of ocean.
U m = − G M m L + G M m R 2 2 L 3 − 3 G M m R 2 2 L 3 cos ⁡ 2 ϕ + g h ( ϕ ) \frac{U}{m} = -G\frac{M_m}{L} + \frac{GM_mR^2}{2L^3} -\frac{3GM_mR^2}{2L^3}\cos^2\phi + gh(\phi) mU=GLMm+2L3GMmR22L33GMmR2cos2ϕ+gh(ϕ)
Select h = 0 h = 0 h=0 at ϕ = 90 ° \phi = 90\degree ϕ=90°, and substitute g = G M e / R 2 g = GM_e/R^2 g=GMe/R2
h ( ϕ ) = 3 M m R 4 2 M e L 3 cos ⁡ 2 ϕ h(\phi) = \frac{3M_mR^4}{2M_eL^3}\cos^2\phi h(ϕ)=2MeL33MmR4cos2ϕ

Rotational Motion

For rotational motion:
v = ω × r \bm{v} = \bm{\omega}\times\bm{r} v=ω×r

For a changing unit vector (for example i \bm{i} i), we have
i ˙ = ( i ˙ ⋅ i ) i + ( i ˙ ⋅ j ) j + ( i ˙ ⋅ k ) k \bm{\dot i} = (\bm{\dot i}\cdot\bm{i})\bm{i} + (\bm{\dot i}\cdot\bm{j})\bm{j} + (\bm{\dot i}\cdot\bm{k})\bm{k} i˙=(i˙i)i+(i˙j)j+(i˙k)k

Note: i ⋅ i = 1 \bm{i}\cdot\bm{i} = 1 ii=1, derivative of both sides: 2 i ˙ ⋅ i = 0 2\bm{\dot i}\cdot\bm{i} = 0 2i˙i=0. Similarly, i ˙ ⋅ j = − j ˙ ⋅ i \bm{\dot i}\cdot\bm{j} = -\bm{\dot j}\cdot\bm{i} i˙j=j˙i

Any position vector can express in two frames of reference (inertial and rotational)
r = x i + y j + z k = x 0 i 0 + y 0 j 0 + z 0 k 0 \bm{r} = x\bm{i} + y\bm{j} + z\bm{k} = x_0\bm{i_0} + y_0\bm{j_0} + z_0\bm{k_0} r=xi+yj+zk=x0i0+y0j0+z0k0

If r \bm{r} r is constant ( x ˙ = y ˙ = z ˙ = 0 \dot x=\dot y=\dot z=0 x˙=y˙=z˙=0), we have
r ˙ = x i ˙ + y j ˙ + z k ˙ = x [ ( i ˙ ⋅ j ) j + ( i ˙ ⋅ k ) k ] + y [ ( j ˙ ⋅ i ) i + ( j ˙ ⋅ k ) k ] + z [ ( k ˙ ⋅ i ) i + ( k ˙ ⋅ j ) j ] = [ ( j ˙ ⋅ i ) y + ( k ˙ ⋅ i ) z ] i + [ ( i ˙ ⋅ j ) x + ( k ˙ ⋅ j ) z ] j + [ ( i ˙ ⋅ k ) x + ( j ˙ ⋅ k ) y ] k = [ ( k ˙ ⋅ i ) z − ( i ˙ ⋅ j ) y ] i − [ ( j ˙ ⋅ k ) z − ( i ˙ ⋅ j ) x ] j + [ ( j ˙ ⋅ k ) y − ( k ˙ ⋅ i ) x ] k \begin{aligned} \bm{\dot r} &= x\bm{\dot i} + y\bm{\dot j} + z\bm{\dot k} \\ &= x[(\bm{\dot i}\cdot\bm{j})\bm{j}+(\bm{\dot i}\cdot\bm{k})\bm{k}] + y[(\bm{\dot j}\cdot\bm{i})\bm{i}+(\bm{\dot j}\cdot\bm{k})\bm{k}] + z[(\bm{\dot k}\cdot\bm{i})\bm{i}+(\bm{\dot k}\cdot\bm{j})\bm{j}] \\ &= [(\bm{\dot j}\cdot\bm{i})y + (\bm{\dot k}\cdot\bm{i})z]\bm{i} + [(\bm{\dot i}\cdot\bm{j})x + (\bm{\dot k}\cdot\bm{j})z]\bm{j} + [(\bm{\dot i}\cdot\bm{k})x + (\bm{\dot j}\cdot\bm{k})y]\bm{k} \\ &= [(\bm{\dot k}\cdot\bm{i})z - (\bm{\dot i}\cdot\bm{j})y]\bm{i} - [(\bm{\dot j}\cdot\bm{k})z - (\bm{\dot i}\cdot\bm{j})x]\bm{j} + [(\bm{\dot j}\cdot\bm{k})y - (\bm{\dot k}\cdot\bm{i})x]\bm{k} \end{aligned} r˙=xi˙+yj˙+zk˙=x[(i˙j)j+(i˙k)k]+y[(j˙i)i+(j˙k)k]+z[(k˙i)i+(k˙j)j]=[(j˙i)y+(k˙i)z]i+[(i˙j)x+(k˙j)z]j+[(i˙k)x+(j˙k)y]k=[(k˙i)z(i˙j)y]i[(j˙k)z(i˙j)x]j+[(j˙k)y(k˙i)x]k
Therefore, define Ω = ( j ˙ ⋅ k , k ˙ ⋅ i , i ˙ ⋅ j ) \bm{\Omega} = (\bm{\dot j}\cdot\bm{k}, \bm{\dot k}\cdot\bm{i}, \bm{\dot i}\cdot\bm{j}) Ω=(j˙k,k˙i,i˙j)
r ˙ = ∣ i j k j ˙ ⋅ k k ˙ ⋅ i i ˙ ⋅ j x y z ∣ = Ω × r \bm{\dot r} = \left|\begin{matrix} \bm{i} & \bm{j} & \bm{k} \\ \bm{\dot j}\cdot\bm{k} & \bm{\dot k}\cdot\bm{i} & \bm{\dot i}\cdot\bm{j} \\ x & y & z \end{matrix}\right| = \bm{\Omega}\times\bm{r} r˙=ij˙kxjk˙iyki˙jz=Ω×r

Index Notation x l e l x_l\bm{e}_l xlel is defined as
∑ l = 1 3 x l e l \sum_{l = 1}^{3}x_l\bm{e}_l l=13xlel

If r \bm{r} r is not constant, r ˙ = x ˙ l e l + x l e ˙ l \bm{\dot r} = \dot x_l\bm{e}_l + x_l\bm{\dot e}_l r˙=x˙lel+xle˙l. Therefore, for any vector r r r, we have:

r ˙ ∣ i n = r ˙ ∣ r o t + Ω × r \bm{\dot r}\big|_{in} = \bm{\dot r}\big|_{rot} + \bm{\Omega}\times\bm{r} r˙in=r˙rot+Ω×r

PHYS104: Advanced Mechanics_第3张图片

Lab frame = inertial frame, Moving frame = rotational frame

r ˙ L ∣ i n = r ˙ O M ∣ i n + r ˙ M ∣ i n = r ˙ O M ∣ i n + Ω × r M + r ˙ M ∣ r o t \bm{\dot r_L}\big|_{in} = \bm{\dot r_{OM}}\big|_{in} + \bm{\dot r_M}\big|_{in} = \bm{\dot r_{OM}}\big|_{in} + \bm{\Omega}\times\bm{r_M} + \bm{\dot r_M}\big|_{rot} r˙Lin=r˙OMin+r˙Min=r˙OMin+Ω×rM+r˙Mrot

Also, for unit vectors
e ˙ l ∣ i n = Ω × e ˙ l ∣ r o t \bm{\dot e_l}\big|_{in} = \bm{\Omega}\times\bm{\dot e_l}\big|_{rot} e˙lin=Ω×e˙lrot

Velocity: (assume the two frames of reference share the same origin)
v = r ˙ ∣ i n = r ˙ ∣ r o t + Ω × r = v r o t + Ω × r \bm{v} = \bm{\dot r}\big|_{in} = \bm{\dot r}\big|_{rot} + \bm{\Omega}\times\bm{r} = \bm{v}_{rot} + \bm{\Omega}\times\bm{r} v=r˙in=r˙rot+Ω×r=vrot+Ω×r

Acceleration: (assume Ω \bm{\Omega} Ω is constant)
a = v ˙ ∣ i n = v ˙ ∣ r o t + Ω × v = d d t ( v r o t + Ω × r ) ∣ r o t + Ω × ( v r o t + Ω × r ) = a r o t + 2 Ω × v r o t + Ω × ( Ω × r ) \begin{aligned} \bm{a} = \bm{\dot v}\big|_{in} &= \bm{\dot v}\big|_{rot} + \bm{\Omega}\times\bm{v} \\ &= \frac{d}{dt}(\bm{v}_{rot} + \bm{\Omega}\times\bm{r})\Big|_{rot} + \bm{\Omega}\times(\bm{v}_{rot} + \bm{\Omega}\times\bm{r}) \\ &= \bm{a}_{rot} + 2\bm{\Omega}\times\bm{v}_{rot} + \bm{\Omega}\times(\bm{\Omega}\times\bm{r}) \end{aligned} a=v˙in=v˙rot+Ω×v=dtd(vrot+Ω×r)rot+Ω×(vrot+Ω×r)=arot+2Ω×vrot+Ω×(Ω×r)

Note:
Ω × ( Ω × r ) = Ω ( Ω ⋅ r ) − r ( Ω ⋅ Ω ) = Ω 2 r ∥ − Ω 2 r = − Ω 2 r ⊥ \bm{\Omega}\times(\bm{\Omega}\times\bm{r}) = \bm{\Omega}(\bm{\Omega}\cdot\bm{r}) - \bm{r}(\bm{\Omega}\cdot\bm{\Omega}) = \Omega^2\bm{r}_{\parallel} - \Omega^2\bm{r} = -\Omega^2\bm{r}_{\perp} Ω×(Ω×r)=Ω(Ωr)r(ΩΩ)=Ω2rΩ2r=Ω2r
Which is known as the centripetal acceleration.
2 Ω × v r o t 2\bm{\Omega}\times\bm{v}_{rot} 2Ω×vrot
is known as the Coriolis acceleration.

Newton’s Second Law in non-inertial frame

∑ F + 2 m v r o t × Ω + m Ω 2 r ⊥ = m a r o t \sum\bm{F} + 2m\bm{v}_{rot}\times\bm{\Omega} + m\Omega^2\bm{r}_{\perp} = m\bm{a}_{rot} F+2mvrot×Ω+mΩ2r=marot

Ficticious forces/forces of inertial: F f i c t = 2 m v r o t × Ω + m Ω 2 r ⊥ \bm{F}_{fict} = 2m\bm{v}_{rot}\times\bm{\Omega} + m\Omega^2\bm{r}_{\perp} Ffict=2mvrot×Ω+mΩ2r

  • the first term is called the Coriolis force
  • the second term is called the centrifugal force.

E.x. of Coriolis force:

  • Cyclon
  • Foucalt Pendulum

Foucalt Pendulum

PHYS104: Advanced Mechanics_第4张图片
With the Newton’s Second Law:
m x ¨ = − T x L + 2 m y ˙ Ω cos ⁡ θ and m y ¨ = − T y L − 2 m x ˙ Ω cos ⁡ θ m\ddot x = -T\frac{x}{L} + 2m\dot y\Omega\cos\theta \quad\text{and}\quad m\ddot y = -T\frac{y}{L} - 2m\dot x\Omega\cos\theta mx¨=TLx+2my˙Ωcosθandmy¨=TLy2mx˙Ωcosθ
Take T ≈ m g T \approx mg Tmg, and multiply the second expression by i i i and make it imaginary, we have
η ¨ = − g L η ˙ − 2 i Ω cos ⁡ θ η , with  η = x + i y \ddot\eta = -\frac{g}{L}\dot\eta - 2i\Omega\cos\theta\eta, \quad\text{with } \eta = x + iy η¨=Lgη˙2iΩcosθη,with η=x+iy

Denote ω 1 2 = g / L \omega_1^2 = g/L ω12=g/L and ω 2 2 = Ω cos ⁡ θ \omega_2^2 = \Omega\cos\theta ω22=Ωcosθ while ω 2 < < ω 1 \omega_2 << \omega_1 ω2<<ω1

Therefore, we have the solution
η = e i ω t , with  ω = − ω 2 ± ω 1 [ 1 + ( ω 2 ω 1 ) 2 ] 1 2 ≈ − ω 2 ± ω 1 ( 1 + 1 2 ω 2 2 ω 1 2 ) = − ω 2 ± ω ± 1 2 ω 2 2 ω 1 \eta = e^{i\omega t}, \quad\text{with } \omega = -\omega_2\plusmn\omega_1[1+(\frac{\omega_2}{\omega_1})^2]^{\frac{1}{2}} \approx -\omega_2\plusmn\omega_1(1+\frac{1}{2}\frac{\omega_2^2}{\omega_1^2}) = -\omega_2\plusmn\omega\plusmn\frac{1}{2}\frac{\omega_2^2}{\omega_1} η=eiωt,with ω=ω2±ω1[1+(ω1ω2)2]21ω2±ω1(1+21ω12ω22)=ω2±ω±21ω1ω22

For approximation, we have ω = − ω 2 ± ω 1 \omega = -\omega_2\plusmn\omega_1 ω=ω2±ω1. Thus
η ( t ) = e − i ω 2 t ( C 1 e i ω 1 t + C 2 e − i ω 1 t ) \eta(t) = e^{-i\omega_2t}(C_1e^{i\omega_1t} + C_2e^{-i\omega_1t}) η(t)=eiω2t(C1eiω1t+C2eiω1t)

If ω 2 = 0 \omega_2 = 0 ω2=0 (ignore earth rotation), we have
η ~ = C 1 e i ω 1 t + C 2 e − i ω 1 t = x ~ + i y ~ \tilde\eta = C_1e^{i\omega_1t} + C_2e^{-i\omega_1t} = \tilde x + i\tilde y η~=C1eiω1t+C2eiω1t=x~+iy~

Therefore,
η ( t ) = e − i ω 2 t ( x ~ + i y ~ ) = ( cos ⁡ ω 2 t + i sin ⁡ ω 2 t ) ( x ~ + i y ~ ) \eta(t) = e^{-i\omega_2t}(\tilde x + i\tilde y) = (\cos\omega_2t + i\sin\omega_2t)(\tilde x + i\tilde y) η(t)=eiω2t(x~+iy~)=(cosω2t+isinω2t)(x~+iy~)

Hence,
[ x y ] = [ cos ⁡ ω 2 t sin ⁡ ω 2 t − sin ⁡ ω 2 t cos ⁡ ω 2 t ] [ x ~ y ~ ] \left[\begin{matrix} x \\ y \end{matrix}\right] = \left[\begin{matrix} \cos\omega_2t & \sin\omega_2t \\ -\sin\omega_2t & \cos\omega_2t \end{matrix}\right]\left[\begin{matrix} \tilde x \\ \tilde y \end{matrix}\right] [xy]=[cosω2tsinω2tsinω2tcosω2t][x~y~]
which is clearly a rotational matrix with angle ω 2 = Ω cos ⁡ θ \omega_2 = \Omega\cos\theta ω2=Ωcosθ
T ′ = 2 π ω 2 = 2 π Ω cos ⁡ θ = T 0 cos ⁡ θ , with  T 0 = 24 h T' = \frac{2\pi}{\omega_2} = \frac{2\pi}{\Omega\cos\theta} = \frac{T_0}{\cos\theta}, \quad\text{with } T_0 = 24h T=ω22π=Ωcosθ2π=cosθT0,with T0=24h

Rigid Body Motion

Johan König (1712-1751)
L = r c m × p c m + L ′ = L o r b + L s p i n \bm{L} = \bm{r}_{cm}\times\bm{p}_{cm} + \bm{L}' = \bm{L}_{orb} + \bm{L}_{spin} L=rcm×pcm+L=Lorb+Lspin
T = 1 2 M r ˙ c m 2 + T ′ = T c m + T r e l T = \frac{1}{2}M\bm{\dot r}_{cm}^2 + T' = T_{cm} + T_{rel} T=21Mr˙cm2+T=Tcm+Trel
In which
T ′ = 1 2 ∑ m v a 2 = 1 2 ∑ m ( ω × r a ) 2 T' = \frac{1}{2}\sum mv_a^2 = \frac{1}{2}\sum m(\bm{\omega}\times\bm{r}_a)^2 T=21mva2=21m(ω×ra)2

Note ( a × b ) 2 = a 2 b 2 − ( a ⋅ b ) 2 (\bm{a}\times\bm{b})^2 = a^2b^2-(\bm{a}\cdot\bm{b})^2 (a×b)2=a2b2(ab)2
T ′ = 1 2 ∑ m [ ω 2 r a 2 − ( ω ⋅ r a ) 2 ] T' = \frac{1}{2}\sum m[\omega^2r_a^2-(\bm{\omega}\cdot\bm{r}_a)^2] T=21m[ω2ra2(ωra)2]
Use the index notation,
T ′ = 1 2 ∑ m [ ω i ω i x a j x a j − ω i x a i ω j x a j ] = 1 2 ∑ m ω i ω j [ δ i j x a k x a k − x a i x a j ] T' = \frac{1}{2}\sum m[\omega_i\omega_ix_{aj}x_{aj} - \omega_ix_{ai}\omega_{j}x_{aj}] = \frac{1}{2}\sum m\omega_i\omega_j[\delta_{ij}x_{ak}x_{ak} - x_{ai}x_{aj}] T=21m[ωiωixajxajωixaiωj

你可能感兴趣的:(Note)