F = m a \bm{F} = m\bm{a} F=ma, is essentially stating a ordinary differential equation
r ¨ = f ( t , r , r ˙ ) \ddot\bm{r} = f(t,\bm{r},\bm{\dot r}) r¨=f(t,r,r˙)
which has two degrees of freedom r ( 0 ) \bm{r}(0) r(0) and r ˙ ( 0 ) \bm{\dot r}(0) r˙(0)
For f ( x ) f(x) f(x): d f = 0 df = 0 df=0 for any d x dx dx. Since d f = f ′ d x df = f'dx df=f′dx, we have f ′ = 0 f' = 0 f′=0.
For multi-variable function F ( x 1 , x 2 , ⋯ , x n ) F(x_1, x_2, \cdots, x_n) F(x1,x2,⋯,xn),
d F = ∇ F ⋅ ( d x 1 , d x 2 , ⋯ , d x n ) T = 0 dF = \nabla F \cdot (dx_1, dx_2, \cdots, dx_n)^T = 0 dF=∇F⋅(dx1,dx2,⋯,dxn)T=0
Change variable d x i = η i d α dx_i = \eta_id\alpha dxi=ηidα
d F = d α ∑ i = 1 n ∂ F ∂ x i η i = 0 dF = d\alpha \sum_{i=1}^{n}\frac{\partial F}{\partial x_i}\eta_i = 0 dF=dαi=1∑n∂xi∂Fηi=0
Since d x i dx_i dxi is arbitrary, η i \eta_i ηi is also arbitrary. For the j t h j^{th} jth term, select η i = 0 , i ≠ j \eta_i = 0, i\neq j ηi=0,i=j and η j = 0 \eta_j = 0 ηj=0, we can obtain
∂ F ∂ x i = 0 , ∀ i \frac{\partial F}{\partial x_i} = 0, \forall i ∂xi∂F=0,∀i
δ F = F ( x 1 + δ x 1 , x 2 + δ x 2 , ⋯ , x n + δ x n ) − F ( x 1 , x 2 , ⋯ , x n ) \delta F = F(x_1+\delta x_1, x_2+\delta x_2, \cdots, x_n+\delta x_n) - F(x_1, x_2, \cdots, x_n) δF=F(x1+δx1,x2+δx2,⋯,xn+δxn)−F(x1,x2,⋯,xn)
δ F = ∇ F ⋅ ( δ x 1 , δ x 2 , ⋯ , δ x n ) T \delta F = \nabla F\cdot (\delta x_1, \delta x_2, \cdots, \delta x_n)^T δF=∇F⋅(δx1,δx2,⋯,δxn)T
δ ( d d x y ) = d d x ( δ y ) \delta(\frac{d}{dx}y) = \frac{d}{dx}(\delta y) δ(dxdy)=dxd(δy)
δ ∫ a b f d x = ∫ a b δ f d x \delta\int_a^bfdx = \int_a^b\delta fdx δ∫abfdx=∫abδfdx
Find the right path making the following integral stationary, with start point and end point fixed.
I = ∫ a b f ( y , y ′ , x ) d x I = \int_a^b f(y,y',x)dx I=∫abf(y,y′,x)dx
I I I is only dependent on α \alpha α and it is stationary at α = 0 , Y ( x ) = y ( x ) \alpha = 0, Y(x) = y(x) α=0,Y(x)=y(x), therefore
d I d α ∣ α = 0 = ∫ a b ∂ f ( y , y ′ , x ) ∂ α d x = 0 \frac{dI}{d\alpha}\Big|_{\alpha=0} = \int_a^b\frac{\partial f(y,y',x)}{\partial\alpha}dx = 0 dαdI∣∣∣α=0=∫ab∂α∂f(y,y′,x)dx=0
Apply the chain rule
∫ a b ( ∂ f ∂ y ∂ y ∂ α + ∂ f ∂ y ′ ∂ y ′ ∂ α ) d x = ∫ a b ( ∂ f ∂ y η + ∂ f ∂ y ′ η ′ ) d x = 0 \int_a^b(\frac{\partial f}{\partial y}\frac{\partial y}{\partial\alpha} + \frac{\partial f}{\partial y'}\frac{\partial y'}{\partial\alpha})dx = \int_a^b(\frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta')dx = 0 ∫ab(∂y∂f∂α∂y+∂y′∂f∂α∂y′)dx=∫ab(∂y∂fη+∂y′∂fη′)dx=0
Treat the second term in the integral with the Law of Integral by Parts
∫ a b ∂ f ∂ y ′ η ′ d x = ∂ f ∂ y ′ η ′ ( x ) ∣ a b − ∫ a b η d d x ∂ f ∂ y ′ d x \int_a^b \frac{\partial f}{\partial y'}\eta'dx = \frac{\partial f}{\partial y'}\eta'(x)\Big|_a^b - \int_a^b\eta\frac{d}{dx}\frac{\partial f}{\partial y'}dx ∫ab∂y′∂fη′dx=∂y′∂fη′(x)∣∣∣ab−∫abηdxd∂y′∂fdx
Since the start point and end point are fixed, the variation η ( x 1 ) = η ( x 2 ) = 0 \eta(x_1) = \eta(x_2) = 0 η(x1)=η(x2)=0, so the first term will vanish. Take the second term back into d I d α \frac{dI}{d\alpha} dαdI
d I d α ∣ α = 0 = ∫ a b η ( x ) ( ∂ f ∂ y − d d x ∂ f ∂ y ′ ) d x = 0 , ∀ η ( x ) \frac{dI}{d\alpha}\Big|_{\alpha=0} = \int_a^b\eta(x)(\frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'})dx = 0, \quad \forall \eta(x) dαdI∣∣∣α=0=∫abη(x)(∂y∂f−dxd∂y′∂f)dx=0,∀η(x)
Therefore, we get the Lagrange Equation
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 ∂y∂f−dxd∂y′∂f=0
δ I = I ( α ) − I ( 0 ) = ∫ a b δ f ( y , y ′ , x ) d x \delta I = I(\alpha) - I(0) = \int_a^b \delta f(y,y',x)dx δI=I(α)−I(0)=∫abδf(y,y′,x)dx
∵ δ x = 0 ∴ δ f = ∂ f ∂ y δ y + ∂ f ∂ y ′ δ y ′ \because \delta x = 0 \quad \therefore \delta f = \frac{\partial f}{\partial y}\delta y + \frac{\partial f}{\partial y'}\delta y' ∵δx=0∴δf=∂y∂fδy+∂y′∂fδy′
Use the change of variable for δ y \delta y δy
d δ f d α = ∂ f ∂ y η + ∂ f ∂ y ′ η ′ \frac{d\delta f}{d\alpha} = \frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta' dαdδf=∂y∂fη+∂y′∂fη′
Take back to the integral. And for the stationary right path, δ I \delta I δI should be zero for all infinitesimal d α d\alpha dα.
d δ I d α = ∫ a b ( ∂ f ∂ y η + ∂ f ∂ y ′ η ′ ) d x = 0 \frac{d\delta I}{d\alpha} = \int_a^b(\frac{\partial f}{\partial y}\eta + \frac{\partial f}{\partial y'}\eta')dx = 0 dαdδI=∫ab(∂y∂fη+∂y′∂fη′)dx=0
Use the same technique as in the Book’s Method, we can get the Euler-Lagrange Equation
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 ∂y∂f−dxd∂y′∂f=0
Make partition between x 0 x_0 x0 and x n x_n xn, with h = x j − x j − 1 = ( b − a ) / n h = x_j - x_{j-1} = (b-a)/n h=xj−xj−1=(b−a)/n. y 1 , y 2 , ⋯ , y n − 1 y_1, y_2, \cdots, y_{n-1} y1,y2,⋯,yn−1 are unknown variables.
By definition of Rieman Sum,
I = lim n → ∞ S n = lim n → ∞ ∑ j = 1 n f ( y j , y j ′ , x j ) h I = \lim_{n\to \infin}S_n =\lim_{n\to \infin}\sum_{j=1}^nf(y_j,y'_j,x_j)h I=n→∞limSn=n→∞limj=1∑nf(yj,yj′,xj)h
By definition of derivatives y j ′ = ( y j − y j − 1 ) / h y'_j = (y_j - y_{j-1})/h yj′=(yj−yj−1)/h. Therefore the Rieman Sum is only function of y j , j ∈ { 1 , ⋯ , n } y_j, \quad j\in\{1,\cdots,n\} yj,j∈{1,⋯,n}
For stationary I I I,
∂ S ∂ y k = 0 , ∀ k ∈ { 1 , ⋯ , n } \frac{\partial S}{\partial y_k} = 0, \quad \forall k\in \{1,\cdots,n\} ∂yk∂S=0,∀k∈{1,⋯,n}
only two terms ( k t h k^{th} kth and ( k + 1 ) t h (k+1)^{th} (k+1)th) are involved. Apply chain rule
∂ S ∂ y k = h ( ∂ f ( y k , y k ′ , x k ) ∂ y k + ∂ f ( y k , y k ′ , x k ) ∂ y k ′ y k ′ y k + ∂ f ( y k + 1 , y k + 1 ′ , x k + 1 ) ∂ y k + 1 ′ y k + 1 ′ y k ) = h ( ∂ f ∂ y k ∣ k + 1 h ∂ f ∂ y ′ ∣ k − 1 h ∂ f ∂ y ′ ∣ k + 1 ) = h ( ∂ f ∂ y k ∣ k − ∂ f ∂ y ′ ∣ k + 1 − ∂ f ∂ y ′ ∣ k h ) \begin{aligned} \frac{\partial S}{\partial y_k} &= h(\frac{\partial f(y_k,y'_k,x_k)}{\partial y_k} + \frac{\partial f(y_k,y'_k,x_k)}{\partial y'_k}\frac{y'_k}{y_k} + \frac{\partial f(y_{k+1},y'_{k+1},x_{k+1})}{\partial y'_{k+1}}\frac{y'_{k+1}}{y_k}) \\ &= h(\frac{\partial f}{\partial y_k}\Big|_k + \frac{1}{h}\frac{\partial f}{\partial y'}\Big|_k - \frac{1}{h}\frac{\partial f}{\partial y'}\Big|_{k+1}) \\ &= h(\frac{\partial f}{\partial y_k}\Big|_k - \frac{\frac{\partial f}{\partial y'}\Big|_{k+1} - \frac{\partial f}{\partial y'}\Big|_k}{h}) \end{aligned} ∂yk∂S=h(∂yk∂f(yk,yk′,xk)+∂yk′∂f(yk,yk′,xk)ykyk′+∂yk+1′∂f(yk+1,yk+1′,xk+1)ykyk+1′)=h(∂yk∂f∣∣∣k+h1∂y′∂f∣∣∣k−h1∂y′∂f∣∣∣k+1)=h(∂yk∂f∣∣∣k−h∂y′∂f∣∣∣k+1−∂y′∂f∣∣∣k)
As it is for all k k k, we can conclude that
∂ f ∂ y − d d x ∂ f ∂ y ′ = 0 \frac{\partial f}{\partial y}-\frac{d}{dx}\frac{\partial f}{\partial y'} = 0 ∂y∂f−dxd∂y′∂f=0
d f d x = ∂ f ∂ y y ′ + ∂ f ∂ y ′ d y ′ d x + ∂ f ∂ x = d d x ( ∂ f ∂ y ′ ) y ′ + ∂ f ∂ y ′ d y ′ d x + ∂ f ∂ x \frac{df}{dx} = \frac{\partial f}{\partial y}y' + \frac{\partial f}{\partial y'}\frac{dy'}{dx} + \frac{\partial f}{\partial x} = \frac{d}{dx}(\frac{\partial f}{\partial y'})y' + \frac{\partial f}{\partial y'}\frac{dy'}{dx} + \frac{\partial f}{\partial x} dxdf=∂y∂fy′+∂y′∂fdxdy′+∂x∂f=dxd(∂y′∂f)y′+∂y′∂fdxdy′+∂x∂f
∂ f ∂ x = d f d x − d d x ( ∂ f ∂ y ′ y ′ ) = d d x ( f − ∂ f ∂ y ′ y ′ ) \frac{\partial f}{\partial x} = \frac{df}{dx} - \frac{d}{dx}(\frac{\partial f}{\partial y'}y') = \frac{d}{dx}(f-\frac{\partial f}{\partial y'}y') ∂x∂f=dxdf−dxd(∂y′∂fy′)=dxd(f−∂y′∂fy′)
when f f f is independent of x x x, we have the Beltrami’s Identity:
f − ∂ f ∂ y ′ y ′ = c o n s t a n t f-\frac{\partial f}{\partial y'}y' = constant f−∂y′∂fy′=constant
Length of the curve on a plane
I = ∫ l d l = ∫ l 1 + y ′ 2 d x I = \int_l dl = \int_l\sqrt{1+y'^2}dx I=∫ldl=∫l1+y′2dx
Take into the Euler-Lagrange Equation
0 = d d x y ′ 1 + y ′ 2 = y ′ ′ 1 + y ′ 2 − y ′ 2 y ′ ′ 1 + y ′ 2 1 + y ′ 2 = y ′ ′ ( 1 + y ′ 2 ) − y ′ 2 y ′ ′ ( 1 + y ′ 2 ) 3 / 2 0=\frac{d}{dx}\frac{y'}{\sqrt{1+y'^2}} = \frac{y''\sqrt{1+y'^2}-\frac{y'^2y''}{\sqrt{1+y'^2}}}{1+y'^2} = \frac{y''(1+y'^2)-y'^2y''}{(1+y'^2)^{3/2}} 0=dxd1+y′2y′=1+y′2y′′1+y′2−1+y′2y′2y′′=(1+y′2)3/2y′′(1+y′2)−y′2y′′
Which implies y ′ ′ = 0 y'' = 0 y′′=0. Thus, the path that makes the length between two given point shortest is a segment of a line.
Brachistochrone
Under gravity g g g, figure out the path x = x ( y ) x=x(y) x=x(y) between given points a and b, such that an object falls with the shortest time.
T = ∫ a b d l v = ∫ a b x ′ 2 + 1 2 g y d y = 1 2 g ∫ a b x ′ 2 + 1 y d y T = \int_a^b\frac{dl}{v} = \int_a^b\frac{\sqrt{x'^2+1}}{\sqrt{2gy}}dy = \frac{1}{\sqrt{2g}}\int_a^b\sqrt{\frac{x'^2+1}{y}}dy T=∫abvdl=∫ab2gyx′2+1dy=2g1∫abyx′2+1dy
Take into the Euler-Lagrange Equation (independent variable is y)
0 = d d y x ′ x ′ 2 + 1 y 0 = \frac{d}{dy}\frac{x'}{\sqrt{x'^2+1}\sqrt{y}} 0=dydx′2+1yx′
So that we can find the part within the derivative should be a constant. For convenience, square it and denote it as
x ′ 2 y ( x ′ 2 + 1 ) = 1 2 a \frac{x'^2}{y(x'^2+1)} = \frac{1}{2a} y(x′2+1)x′2=2a1
Make a transformation
x ′ = y 2 a − y x' = \sqrt{\frac{y}{2a-y}} x′=2a−yy
Make substitution y = α ( 1 − cos θ ) y = \alpha(1-\cos\theta) y=α(1−cosθ) and integrate. Without loss of generallity, fix initial point at ( 0 , 0 ) (0,0) (0,0), we get
x = α ( θ − sin θ ) x=\alpha(\theta-\sin\theta) x=α(θ−sinθ)
Which is exactly the parametric funtion for cycloid.
Sometimes for system with conservation of energy and all potential force, we can obtain the equation of motion by d E d t = 0 \frac{dE}{dt} = 0 dtdE=0. But with multiple degrees of freedom, this cannot work, which requires further technique.
D’Alembert’s Principle
In dynamics, F − m a = 0 \bm{F} - m\bm{a} = \bm{0} F−ma=0. For virtual work δ W = ( F − m a ) ⋅ δ r = 0 \delta W = (\bm{F} - m\bm{a})\cdot\delta\bm{r} = 0 δW=(F−ma)⋅δr=0
∫ t 1 t 2 δ W d t = ∫ t 1 t 2 [ F − d d t ( m v ) ] δ r d t \int_{t_1}^{t_2}\delta Wdt = \int_{t_1}^{t_2}[\bm{F}-\frac{d}{dt}(m\bm{v})]\delta\bm{r}dt ∫t1t2δWdt=∫t1t2[F−dtd(mv)]δrdt
For potential forces,
∫ t 1 t 2 F ⋅ δ r d t = − δ ∫ t 1 t 2 U d t \int_{t_1}^{t_2}\bm{F}\cdot\delta\bm{r}dt = -\delta\int_{t_1}^{t_2}Udt ∫t1t2F⋅δrdt=−δ∫t1t2Udt
For fixed initial and final problems, we have δ r ( t 1 ) = δ r ( t 2 ) = 0 \delta\bm{r}(t_1) = \delta\bm{r}(t_2) = 0 δr(t1)=δr(t2)=0. Thus
− ∫ t 1 t 2 d d t ( m v ) δ r d t = − m v δ r ∣ t 1 t 2 + ∫ t 1 t 2 m v d d t ( δ r ) d t = ∫ t 1 t 2 m v δ v d t -\int_{t_1}^{t_2}\frac{d}{dt}(m\bm{v})\delta\bm{r}dt = -m\bm{v}\delta\bm{r}\Big|_{t_1}^{t_2} + \int_{t_1}^{t_2}m\bm{v}\frac{d}{dt}(\delta\bm{r})dt = \int_{t_1}^{t_2}m\bm{v}\delta\bm{v}dt −∫t1t2dtd(mv)δrdt=−mvδr∣∣∣t1t2+∫t1t2mvdtd(δr)dt=∫t1t2mvδvdt
Note: δ ( x 2 ) = 2 x δ x \delta(x^2) = 2x\delta x δ(x2)=2xδx
− ∫ t 1 t 2 d d t ( m v ) δ r d t = δ ∫ t 1 t 2 m v 2 2 d t = δ ∫ t 1 t 2 T d t -\int_{t_1}^{t_2}\frac{d}{dt}(m\bm{v})\delta\bm{r}dt = \delta\int_{t_1}^{t_2}\frac{m\bm{v}^2}{2}dt = \delta\int_{t_1}^{t_2}Tdt −∫t1t2dtd(mv)δrdt=δ∫t1t22mv2dt=δ∫t1t2Tdt
Take them back into ∫ t 1 t 2 δ W d t \int_{t_1}^{t_2}\delta Wdt ∫t1t2δWdt, we have
∫ t 1 t 2 δ W d t = δ ∫ t 1 t 2 ( T − U ) d t = 0 \int_{t_1}^{t_2}\delta Wdt = \delta\int_{t_1}^{t_2}(T-U)dt = 0 ∫t1t2δWdt=δ∫t1t2(T−U)dt=0
Define Lagrangian as
L = T − U \mathcal{L} = T-U L=T−U
Define Action as
A = S = ∫ t 1 t 2 L d t \mathcal{A} = \mathcal{S} = \int_{t_1}^{t_2}\mathcal{L}dt A=S=∫t1t2Ldt
In Multi-objects system with multiple degree of freedom, Lagrangian may take the form of
L = L ( q 1 , q ˙ 1 , q 2 , q ˙ 2 , ⋯ , q n , q ˙ n , t ) \mathcal{L} = \mathcal{L}(q_1, \dot q_1, q_2, \dot q_2, \cdots, q_n, \dot q_n, t) L=L(q1,q˙1,q2,q˙2,⋯,qn,q˙n,t)
in which q 1 , q 2 , ⋯ , q n q_1, q_2, \cdots, q_n q1,q2,⋯,qn are generalized coordinates.
Each position vector is a function of generalized coordinates and maybe time
r a = r a ( q 1 , q 2 , ⋯ , q n , t ) \bm{r}_a = \bm{r}_a(q_1, q_2, \cdots, q_n, t) ra=ra(q1,q2,⋯,qn,t)
- Scleronomic: r \bm{r} r is not time-dependent (nature).
- Rheonomic: r \bm{r} r is time-dependent (not nature).
- Holonomic: The degree of freedom is the same as the number of coordinates needed to describe the system.
- Nonholonomic: Ex. a ball rolls without sliding on a plane has 2 degree of freedom, but its orientation changes are not same when rolling along different paths.
For j ∈ { 1 , ⋯ , n } j\in\{1,\cdots,n\} j∈{1,⋯,n}, define
Generalized Momentum: P j = ∂ L ∂ q ˙ j \textbf{Generalized Momentum: } \mathcal{P_j} = \frac{\partial\mathcal{L}}{\partial\dot q_j} Generalized Momentum: Pj=∂q˙j∂L
Generalized Force: Q j = ∂ L ∂ q j \textbf{Generalized Force: } \mathcal{Q_j} = \frac{\partial\mathcal{L}}{\partial q_j} Generalized Force: Qj=∂qj∂L
D’Alembert’s Principle implies that the action
A = ∫ t 1 t 2 L d t \mathcal{A} = \int_{t_1}^{t_2}\mathcal{L}dt A=∫t1t2Ldt
should be stationary, which is called Hamilton’s Principle.
Apply the Euler-Lagrange Equation, we can obtain the Lagrange Equation
∂ L ∂ q j − d d t ∂ L ∂ q ˙ j \frac{\partial\mathcal{L}}{\partial q_j} - \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j} ∂qj∂L−dtd∂q˙j∂L
Sometimes the system is constraint, like on some surface. For a virtual path from t 1 t_1 t1 to t 2 t_2 t2.
R ( t ) = r ( t ) + ϵ ( t ) , ϵ ( t 1 ) = ϵ ( t 2 ) = 0 \bm{R}(t) = \bm{r}(t) + \bm{\epsilon}(t), \quad \bm{\epsilon}(t_1) = \bm{\epsilon}(t_2) = 0 R(t)=r(t)+ϵ(t),ϵ(t1)=ϵ(t2)=0
ϵ ( t ) \bm{\epsilon}(t) ϵ(t) is infinitesimal variation in the constraint surface. Therefore,
δ L = 1 2 m [ ( r ˙ + ϵ ˙ ) 2 − r ˙ 2 ] − [ U ( r + ϵ , t ) − U ( r , t ) ] = 1 2 m ( 2 ϵ ˙ r ˙ + ϵ ˙ 2 ) − ( ∇ U ⋅ ϵ + O ( ϵ 2 ) ) \begin{aligned} \delta\mathcal{L} &= \frac{1}{2}m[(\bm{\dot r}+\bm{\dot \epsilon})^2-\bm{\dot r}^2] - [U(\bm{r}+\bm{\epsilon},t)-U(\bm{r},t)] \\ &= \frac{1}{2}m(2\bm{\dot \epsilon}\bm{\dot r}+\bm{\dot \epsilon}^2) - (\nabla U\cdot\bm{\epsilon}+O(\bm{\epsilon}^2)) \end{aligned} δL=21m[(r˙+ϵ˙)2−r˙2]−[U(r+ϵ,t)−U(r,t)]=21m(2ϵ˙r˙+ϵ˙2)−(∇U⋅ϵ+O(ϵ2))
Omit all the higher order terms for infinitesimal variation ϵ ( t ) \bm{\epsilon}(t) ϵ(t), and note that − ∇ U -\nabla U −∇U is the non-conservative potential force F F F of the system. Thus, we have δ L = m ϵ ˙ r ˙ − F ⋅ ϵ \delta\mathcal{L} = m\bm{\dot \epsilon}\bm{\dot r} - \bm{F}\cdot\bm{\epsilon} δL=mϵ˙r˙−F⋅ϵ
Hence, for the Action of the system
δ A = ∫ t 1 t 2 δ L d t = ∫ t 1 t 2 ( m ϵ ˙ r ˙ − F ⋅ ϵ ) d t = m r ˙ ϵ ( t ) ∣ t 1 t 2 − ϵ ∫ t 1 t 2 ( m r ¨ − F ) d t \begin{aligned} \delta\mathcal{A} &= \int_{t_1}^{t_2}\delta\mathcal{L}dt = \int_{t_1}^{t_2}(m\bm{\dot \epsilon}\bm{\dot r} - \bm{F}\cdot\bm{\epsilon})dt \\ &= m\bm{\dot r}\bm{\epsilon}(t)\Big|_{t_1}^{t_2} - \bm{\epsilon}\int_{t_1}^{t_2}(m\ddot\bm{r} - F)dt \\ \end{aligned} δA=∫t1t2δLdt=∫t1t2(mϵ˙r˙−F⋅ϵ)dt=mr˙ϵ(t)∣∣∣t1t2−ϵ∫t1t2(mr¨−F)dt
The first term is zero due to the boundary condition. The second term is equivalent to F n e t − F \bm{F}_{net} - \bm{F} Fnet−F which is the constraint force of the system. As the constraint force is perpendicular to the surface. So ϵ ⋅ ( F n e t − F ) \bm{\epsilon}\cdot(\bm{F}_{net} - \bm{F}) ϵ⋅(Fnet−F) is zero as well.
Therefore, we have proved that for the constraint system the action is stationary.
In the proof above, we assume that the generalized coordinates follows the contraint conditions. Ex. in simple pendulum, fix the length of the string and use θ \theta θ represents the only degree of freedom. However, when constraint condition takes the form of constraint equation, we have to modify the Lagrange Equation with Lagrange Multiplier.
If there is serveral constraint ϕ k ( q 1 , q 2 , ⋯ , q n ) = 0 \phi_k(q_1,q_2,\cdots,q_n) = 0 ϕk(q1,q2,⋯,qn)=0, then the Lagrange Equation is modified as
∂ L ∂ q j − d d t ∂ L ∂ q ˙ j + ∑ k λ k ∂ ϕ k ∂ q j = 0 \frac{\partial\mathcal{L}}{\partial q_j}-\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j} + \sum_k\lambda_k\frac{\partial\phi_k}{\partial q_j} = 0 ∂qj∂L−dtd∂q˙j∂L+k∑λk∂qj∂ϕk=0
Interestingly, in this modified Lagrange Equation, λ k ∂ ϕ k ∂ q j \lambda_k\frac{\partial\phi_k}{\partial q_j} λk∂qj∂ϕk is the contraint force in the particular coordinate q j q_j qj.
Following two aspects of symmetry is known as Emmy Neother theorem (1915), which indicates that when action doesn’t change symmetry leads to conservation law.
If we move every particle in a system by δ x \delta x δx and the Lagrangian doesn’t change, the system is symmetric in space.
δ L = ∑ ∂ L ∂ x ˙ a δ x ˙ + ∑ ∂ L ∂ x a δ x = ∑ ∂ L ∂ x a δ x \delta \mathcal{L} = \sum\frac{\partial\mathcal{L}}{\partial\dot x_a}\dot{\delta x} + \sum\frac{\partial\mathcal{L}}{\partial x_a}\delta x = \sum\frac{\partial\mathcal{L}}{\partial x_a}\delta x δL=∑∂x˙a∂Lδx˙+∑∂xa∂Lδx=∑∂xa∂Lδx
Use the Lagrange Equation, we have
δ L δ x = ∑ ( d d t ∂ L ∂ x ˙ a ) = d d t ( ∑ P a ) = 0 \frac{\delta\mathcal{L}}{\delta x} = \sum(\frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot x_a}) = \frac{d}{dt}(\sum\mathcal{P}_a) = 0 δxδL=∑(dtd∂x˙a∂L)=dtd(∑Pa)=0
Therefore, the total generalized momentum is constant.
If the Lagrangian is not time-dependent
d L = ∑ ∂ L ∂ q ˙ j d q ˙ j + ∑ ∂ L ∂ q j d q j + ∂ L ∂ t d t d\mathcal{L} = \sum\frac{\partial\mathcal{L}}{\partial\dot q_j}d\dot q_j + \sum\frac{\partial\mathcal{L}}{\partial q_j}dq_j + \frac{\partial\mathcal{L}}{\partial t}dt dL=∑∂q˙j∂Ldq˙j+∑∂qj∂Ldqj+∂t∂Ldt
Use the Lagrange Equation in the second term, we have
− ∂ L ∂ t = ∑ ( ∂ L ∂ q ˙ j d q ˙ j d t + d d t ∂ L ∂ q ˙ j q ˙ j ) − d L d t = d d t ( ∑ ∂ L ∂ q ˙ j q ˙ j − L ) = 0 -\frac{\partial\mathcal{L}}{\partial t} = \sum(\frac{\partial\mathcal{L}}{\partial\dot q_j}\frac{d\dot q_j}{dt} + \frac{d}{dt}\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j) - \frac{d\mathcal{L}}{dt} = \frac{d}{dt}(\sum\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j - \mathcal{L}) = 0 −∂t∂L=∑(∂q˙j∂Ldtdq˙j+dtd∂q˙j∂Lq˙j)−dtdL=dtd(∑∂q˙j∂Lq˙j−L)=0
Define Hamiltonian as
H = ∑ ∂ L ∂ q ˙ j q ˙ j − L \mathcal{H} = \sum\frac{\partial\mathcal{L}}{\partial\dot q_j}\dot q_j - \mathcal{L} H=∑∂q˙j∂Lq˙j−L
If every object has a position vector independent from time, T T T is a second order homogeneous function for q ˙ 1 , q ˙ 2 , ⋯ , q ˙ n \dot q_1, \dot q_2, \cdots, \dot q_n q˙1,q˙2,⋯,q˙n
If function f ( x 1 , x 2 , ⋯ , x n ) f(x_1, x_2, \cdots, x_n) f(x1,x2,⋯,xn) has the property
f ( k x 1 , k x 2 , ⋯ , k x n ) = k n f ( x 1 , x 2 , ⋯ , x n ) f(kx_1, kx_2, \cdots, kx_n) = k^nf(x_1, x_2, \cdots, x_n) f(kx1,kx2,⋯,kxn)=knf(x1,x2,⋯,xn)
Then it is called homogeneous function with the order of n n n. And it’s proved that for this function
∑ ∂ f ∂ x j x j = n f ( x 1 , x 2 , ⋯ , x n ) \sum\frac{\partial f}{\partial x_j}x_j = nf(x_1, x_2, \cdots, x_n) ∑∂xj∂fxj=nf(x1,x2,⋯,xn)
H = ∑ ∂ T ∂ q ˙ j q ˙ j − L = 2 T − T + U = E \mathcal{H} = \sum\frac{\partial T}{\partial\dot q_j}\dot q_j - \mathcal{L} = 2T - T + U = E H=∑∂q˙j∂Tq˙j−L=2T−T+U=E
Which implies the conservation of energy.
m a = q ( E + v × B ) m\bm{a} = q(\bm{E}+\bm{v}\times\bm{B}) ma=q(E+v×B)
L = 1 2 m v 2 − q ( ϕ − v ⋅ A ) \mathcal{L} = \frac{1}{2}m\bm{v}^2 - q(\phi - \bm{v}\cdot\bm{A}) L=21mv2−q(ϕ−v⋅A)
The unit vectors don’t change. Thus, r = r o ′ + r ′ \bm{r} = \bm{r}_{o'} + \bm{r}' r=ro′+r′
Get time derivative of both sides, a = a o ′ + a ′ \bm{a} = \bm{a}_{o'} + \bm{a}' a=ao′+a′ Therefore, we have the Newton’s Second Law with the Inertial Force or Frictional Force
∑ F − m a o ′ = m a ′ \sum{\bm{F}} - m\bm{a}_{o'} = m\bm{a}' ∑F−mao′=ma′
Ignore the rotation of the Earth.
Take the Earth as the Frame of Reference
m r ¨ = ∑ F − m a o ′ = m g − G M m m s 2 s ^ + G M m m L 2 L ^ + F o t h e r m\ddot\bm{r} = \sum\bm{F}-m\bm{a}_{o'} = m\bm{g} - G\frac{M_mm}{s^2}\bm{\hat{s}} + G\frac{M_mm}{L^2}\bm{\hat{L}} + \bm{F}_{other} mr¨=∑F−mao′=mg−Gs2Mmms^+GL2MmmL^+Fother
In which the third term is the inertial force. And we define
F t i d a l = − G M m m s 2 s ^ + G M m m L 2 L ^ F_{tidal} = - G\frac{M_mm}{s^2}\bm{\hat{s}} + G\frac{M_mm}{L^2}\bm{\hat{L}} Ftidal=−Gs2Mmms^+GL2MmmL^
The inertial force has fixed direction and fixed magnitude, so it is potential. Thus, all the potential energy:
U L = − G M m m L 2 x = − G M m m L 2 R cos ϕ U g = m g h ( ϕ ) U s = − G M m m s ∴ U m = − G M m s − G M m L 2 R cos ϕ + g h ( ϕ ) \begin{aligned} &U_L = -G\frac{M_mm}{L^2}x = -G\frac{M_mm}{L^2}R\cos\phi \\ &U_g = mgh(\phi) \\ &U_s = -G\frac{M_mm}{s} \\ \therefore\; &\frac{U}{m} = -G\frac{M_m}{s}-G\frac{M_m}{L^2}R\cos\phi+gh(\phi) \end{aligned} ∴UL=−GL2Mmmx=−GL2MmmRcosϕUg=mgh(ϕ)Us=−GsMmmmU=−GsMm−GL2MmRcosϕ+gh(ϕ)
With Law of Cosine and Taylor Expansion
1 s = 1 L ( 1 + ( R L ) 2 + 2 ( R L ) cos ϕ ) − 1 2 = 1 L { 1 + ( − 1 2 ) [ ( R L ) 2 + 2 ( R L ) cos ϕ ] + 3 8 [ ( R L ) 2 + 2 ( R L ) cos ϕ ] 2 } = 1 L { 1 − 1 2 ( R L ) 2 − ( R L ) cos ϕ + 3 2 ( R L ) 2 cos 2 ϕ + O ( R L ) 3 } \begin{aligned} \frac{1}{s} &= \frac{1}{L}(1+(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi)^{-\frac{1}{2}} \\ &= \frac{1}{L}\Big\{ 1+(-\frac{1}{2})\big[(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi\big] + \frac{3}{8}\big[(\frac{R}{L})^2 + 2(\frac{R}{L})\cos\phi\big]^2 \Big\} \\ &= \frac{1}{L}\Big\{ 1-\frac{1}{2}(\frac{R}{L})^2 - (\frac{R}{L})\cos\phi + \frac{3}{2}(\frac{R}{L})^2\cos^2\phi + O(\frac{R}{L})^3 \Big\} \end{aligned} s1=L1(1+(LR)2+2(LR)cosϕ)−21=L1{1+(−21)[(LR)2+2(LR)cosϕ]+83[(LR)2+2(LR)cosϕ]2}=L1{1−21(LR)2−(LR)cosϕ+23(LR)2cos2ϕ+O(LR)3}
Take this back into U m \frac{U}{m} mU, which should be a constant for the surface of ocean.
U m = − G M m L + G M m R 2 2 L 3 − 3 G M m R 2 2 L 3 cos 2 ϕ + g h ( ϕ ) \frac{U}{m} = -G\frac{M_m}{L} + \frac{GM_mR^2}{2L^3} -\frac{3GM_mR^2}{2L^3}\cos^2\phi + gh(\phi) mU=−GLMm+2L3GMmR2−2L33GMmR2cos2ϕ+gh(ϕ)
Select h = 0 h = 0 h=0 at ϕ = 90 ° \phi = 90\degree ϕ=90°, and substitute g = G M e / R 2 g = GM_e/R^2 g=GMe/R2
h ( ϕ ) = 3 M m R 4 2 M e L 3 cos 2 ϕ h(\phi) = \frac{3M_mR^4}{2M_eL^3}\cos^2\phi h(ϕ)=2MeL33MmR4cos2ϕ
For rotational motion:
v = ω × r \bm{v} = \bm{\omega}\times\bm{r} v=ω×r
For a changing unit vector (for example i \bm{i} i), we have
i ˙ = ( i ˙ ⋅ i ) i + ( i ˙ ⋅ j ) j + ( i ˙ ⋅ k ) k \bm{\dot i} = (\bm{\dot i}\cdot\bm{i})\bm{i} + (\bm{\dot i}\cdot\bm{j})\bm{j} + (\bm{\dot i}\cdot\bm{k})\bm{k} i˙=(i˙⋅i)i+(i˙⋅j)j+(i˙⋅k)k
Note: i ⋅ i = 1 \bm{i}\cdot\bm{i} = 1 i⋅i=1, derivative of both sides: 2 i ˙ ⋅ i = 0 2\bm{\dot i}\cdot\bm{i} = 0 2i˙⋅i=0. Similarly, i ˙ ⋅ j = − j ˙ ⋅ i \bm{\dot i}\cdot\bm{j} = -\bm{\dot j}\cdot\bm{i} i˙⋅j=−j˙⋅i
Any position vector can express in two frames of reference (inertial and rotational)
r = x i + y j + z k = x 0 i 0 + y 0 j 0 + z 0 k 0 \bm{r} = x\bm{i} + y\bm{j} + z\bm{k} = x_0\bm{i_0} + y_0\bm{j_0} + z_0\bm{k_0} r=xi+yj+zk=x0i0+y0j0+z0k0
If r \bm{r} r is constant ( x ˙ = y ˙ = z ˙ = 0 \dot x=\dot y=\dot z=0 x˙=y˙=z˙=0), we have
r ˙ = x i ˙ + y j ˙ + z k ˙ = x [ ( i ˙ ⋅ j ) j + ( i ˙ ⋅ k ) k ] + y [ ( j ˙ ⋅ i ) i + ( j ˙ ⋅ k ) k ] + z [ ( k ˙ ⋅ i ) i + ( k ˙ ⋅ j ) j ] = [ ( j ˙ ⋅ i ) y + ( k ˙ ⋅ i ) z ] i + [ ( i ˙ ⋅ j ) x + ( k ˙ ⋅ j ) z ] j + [ ( i ˙ ⋅ k ) x + ( j ˙ ⋅ k ) y ] k = [ ( k ˙ ⋅ i ) z − ( i ˙ ⋅ j ) y ] i − [ ( j ˙ ⋅ k ) z − ( i ˙ ⋅ j ) x ] j + [ ( j ˙ ⋅ k ) y − ( k ˙ ⋅ i ) x ] k \begin{aligned} \bm{\dot r} &= x\bm{\dot i} + y\bm{\dot j} + z\bm{\dot k} \\ &= x[(\bm{\dot i}\cdot\bm{j})\bm{j}+(\bm{\dot i}\cdot\bm{k})\bm{k}] + y[(\bm{\dot j}\cdot\bm{i})\bm{i}+(\bm{\dot j}\cdot\bm{k})\bm{k}] + z[(\bm{\dot k}\cdot\bm{i})\bm{i}+(\bm{\dot k}\cdot\bm{j})\bm{j}] \\ &= [(\bm{\dot j}\cdot\bm{i})y + (\bm{\dot k}\cdot\bm{i})z]\bm{i} + [(\bm{\dot i}\cdot\bm{j})x + (\bm{\dot k}\cdot\bm{j})z]\bm{j} + [(\bm{\dot i}\cdot\bm{k})x + (\bm{\dot j}\cdot\bm{k})y]\bm{k} \\ &= [(\bm{\dot k}\cdot\bm{i})z - (\bm{\dot i}\cdot\bm{j})y]\bm{i} - [(\bm{\dot j}\cdot\bm{k})z - (\bm{\dot i}\cdot\bm{j})x]\bm{j} + [(\bm{\dot j}\cdot\bm{k})y - (\bm{\dot k}\cdot\bm{i})x]\bm{k} \end{aligned} r˙=xi˙+yj˙+zk˙=x[(i˙⋅j)j+(i˙⋅k)k]+y[(j˙⋅i)i+(j˙⋅k)k]+z[(k˙⋅i)i+(k˙⋅j)j]=[(j˙⋅i)y+(k˙⋅i)z]i+[(i˙⋅j)x+(k˙⋅j)z]j+[(i˙⋅k)x+(j˙⋅k)y]k=[(k˙⋅i)z−(i˙⋅j)y]i−[(j˙⋅k)z−(i˙⋅j)x]j+[(j˙⋅k)y−(k˙⋅i)x]k
Therefore, define Ω = ( j ˙ ⋅ k , k ˙ ⋅ i , i ˙ ⋅ j ) \bm{\Omega} = (\bm{\dot j}\cdot\bm{k}, \bm{\dot k}\cdot\bm{i}, \bm{\dot i}\cdot\bm{j}) Ω=(j˙⋅k,k˙⋅i,i˙⋅j)
r ˙ = ∣ i j k j ˙ ⋅ k k ˙ ⋅ i i ˙ ⋅ j x y z ∣ = Ω × r \bm{\dot r} = \left|\begin{matrix} \bm{i} & \bm{j} & \bm{k} \\ \bm{\dot j}\cdot\bm{k} & \bm{\dot k}\cdot\bm{i} & \bm{\dot i}\cdot\bm{j} \\ x & y & z \end{matrix}\right| = \bm{\Omega}\times\bm{r} r˙=∣∣∣∣∣∣ij˙⋅kxjk˙⋅iyki˙⋅jz∣∣∣∣∣∣=Ω×r
Index Notation x l e l x_l\bm{e}_l xlel is defined as
∑ l = 1 3 x l e l \sum_{l = 1}^{3}x_l\bm{e}_l l=1∑3xlel
If r \bm{r} r is not constant, r ˙ = x ˙ l e l + x l e ˙ l \bm{\dot r} = \dot x_l\bm{e}_l + x_l\bm{\dot e}_l r˙=x˙lel+xle˙l. Therefore, for any vector r r r, we have:
r ˙ ∣ i n = r ˙ ∣ r o t + Ω × r \bm{\dot r}\big|_{in} = \bm{\dot r}\big|_{rot} + \bm{\Omega}\times\bm{r} r˙∣∣in=r˙∣∣rot+Ω×r
Lab frame = inertial frame, Moving frame = rotational frame
r ˙ L ∣ i n = r ˙ O M ∣ i n + r ˙ M ∣ i n = r ˙ O M ∣ i n + Ω × r M + r ˙ M ∣ r o t \bm{\dot r_L}\big|_{in} = \bm{\dot r_{OM}}\big|_{in} + \bm{\dot r_M}\big|_{in} = \bm{\dot r_{OM}}\big|_{in} + \bm{\Omega}\times\bm{r_M} + \bm{\dot r_M}\big|_{rot} r˙L∣∣in=r˙OM∣∣in+r˙M∣∣in=r˙OM∣∣in+Ω×rM+r˙M∣∣rot
Also, for unit vectors
e ˙ l ∣ i n = Ω × e ˙ l ∣ r o t \bm{\dot e_l}\big|_{in} = \bm{\Omega}\times\bm{\dot e_l}\big|_{rot} e˙l∣∣in=Ω×e˙l∣∣rot
Velocity: (assume the two frames of reference share the same origin)
v = r ˙ ∣ i n = r ˙ ∣ r o t + Ω × r = v r o t + Ω × r \bm{v} = \bm{\dot r}\big|_{in} = \bm{\dot r}\big|_{rot} + \bm{\Omega}\times\bm{r} = \bm{v}_{rot} + \bm{\Omega}\times\bm{r} v=r˙∣∣in=r˙∣∣rot+Ω×r=vrot+Ω×r
Acceleration: (assume Ω \bm{\Omega} Ω is constant)
a = v ˙ ∣ i n = v ˙ ∣ r o t + Ω × v = d d t ( v r o t + Ω × r ) ∣ r o t + Ω × ( v r o t + Ω × r ) = a r o t + 2 Ω × v r o t + Ω × ( Ω × r ) \begin{aligned} \bm{a} = \bm{\dot v}\big|_{in} &= \bm{\dot v}\big|_{rot} + \bm{\Omega}\times\bm{v} \\ &= \frac{d}{dt}(\bm{v}_{rot} + \bm{\Omega}\times\bm{r})\Big|_{rot} + \bm{\Omega}\times(\bm{v}_{rot} + \bm{\Omega}\times\bm{r}) \\ &= \bm{a}_{rot} + 2\bm{\Omega}\times\bm{v}_{rot} + \bm{\Omega}\times(\bm{\Omega}\times\bm{r}) \end{aligned} a=v˙∣∣in=v˙∣∣rot+Ω×v=dtd(vrot+Ω×r)∣∣∣rot+Ω×(vrot+Ω×r)=arot+2Ω×vrot+Ω×(Ω×r)
Note:
Ω × ( Ω × r ) = Ω ( Ω ⋅ r ) − r ( Ω ⋅ Ω ) = Ω 2 r ∥ − Ω 2 r = − Ω 2 r ⊥ \bm{\Omega}\times(\bm{\Omega}\times\bm{r}) = \bm{\Omega}(\bm{\Omega}\cdot\bm{r}) - \bm{r}(\bm{\Omega}\cdot\bm{\Omega}) = \Omega^2\bm{r}_{\parallel} - \Omega^2\bm{r} = -\Omega^2\bm{r}_{\perp} Ω×(Ω×r)=Ω(Ω⋅r)−r(Ω⋅Ω)=Ω2r∥−Ω2r=−Ω2r⊥
Which is known as the centripetal acceleration.
2 Ω × v r o t 2\bm{\Omega}\times\bm{v}_{rot} 2Ω×vrot
is known as the Coriolis acceleration.
∑ F + 2 m v r o t × Ω + m Ω 2 r ⊥ = m a r o t \sum\bm{F} + 2m\bm{v}_{rot}\times\bm{\Omega} + m\Omega^2\bm{r}_{\perp} = m\bm{a}_{rot} ∑F+2mvrot×Ω+mΩ2r⊥=marot
Ficticious forces/forces of inertial: F f i c t = 2 m v r o t × Ω + m Ω 2 r ⊥ \bm{F}_{fict} = 2m\bm{v}_{rot}\times\bm{\Omega} + m\Omega^2\bm{r}_{\perp} Ffict=2mvrot×Ω+mΩ2r⊥
E.x. of Coriolis force:
- Cyclon
- Foucalt Pendulum
With the Newton’s Second Law:
m x ¨ = − T x L + 2 m y ˙ Ω cos θ and m y ¨ = − T y L − 2 m x ˙ Ω cos θ m\ddot x = -T\frac{x}{L} + 2m\dot y\Omega\cos\theta \quad\text{and}\quad m\ddot y = -T\frac{y}{L} - 2m\dot x\Omega\cos\theta mx¨=−TLx+2my˙Ωcosθandmy¨=−TLy−2mx˙Ωcosθ
Take T ≈ m g T \approx mg T≈mg, and multiply the second expression by i i i and make it imaginary, we have
η ¨ = − g L η ˙ − 2 i Ω cos θ η , with η = x + i y \ddot\eta = -\frac{g}{L}\dot\eta - 2i\Omega\cos\theta\eta, \quad\text{with } \eta = x + iy η¨=−Lgη˙−2iΩcosθη,with η=x+iy
Denote ω 1 2 = g / L \omega_1^2 = g/L ω12=g/L and ω 2 2 = Ω cos θ \omega_2^2 = \Omega\cos\theta ω22=Ωcosθ while ω 2 < < ω 1 \omega_2 << \omega_1 ω2<<ω1
Therefore, we have the solution
η = e i ω t , with ω = − ω 2 ± ω 1 [ 1 + ( ω 2 ω 1 ) 2 ] 1 2 ≈ − ω 2 ± ω 1 ( 1 + 1 2 ω 2 2 ω 1 2 ) = − ω 2 ± ω ± 1 2 ω 2 2 ω 1 \eta = e^{i\omega t}, \quad\text{with } \omega = -\omega_2\plusmn\omega_1[1+(\frac{\omega_2}{\omega_1})^2]^{\frac{1}{2}} \approx -\omega_2\plusmn\omega_1(1+\frac{1}{2}\frac{\omega_2^2}{\omega_1^2}) = -\omega_2\plusmn\omega\plusmn\frac{1}{2}\frac{\omega_2^2}{\omega_1} η=eiωt,with ω=−ω2±ω1[1+(ω1ω2)2]21≈−ω2±ω1(1+21ω12ω22)=−ω2±ω±21ω1ω22
For approximation, we have ω = − ω 2 ± ω 1 \omega = -\omega_2\plusmn\omega_1 ω=−ω2±ω1. Thus
η ( t ) = e − i ω 2 t ( C 1 e i ω 1 t + C 2 e − i ω 1 t ) \eta(t) = e^{-i\omega_2t}(C_1e^{i\omega_1t} + C_2e^{-i\omega_1t}) η(t)=e−iω2t(C1eiω1t+C2e−iω1t)
If ω 2 = 0 \omega_2 = 0 ω2=0 (ignore earth rotation), we have
η ~ = C 1 e i ω 1 t + C 2 e − i ω 1 t = x ~ + i y ~ \tilde\eta = C_1e^{i\omega_1t} + C_2e^{-i\omega_1t} = \tilde x + i\tilde y η~=C1eiω1t+C2e−iω1t=x~+iy~
Therefore,
η ( t ) = e − i ω 2 t ( x ~ + i y ~ ) = ( cos ω 2 t + i sin ω 2 t ) ( x ~ + i y ~ ) \eta(t) = e^{-i\omega_2t}(\tilde x + i\tilde y) = (\cos\omega_2t + i\sin\omega_2t)(\tilde x + i\tilde y) η(t)=e−iω2t(x~+iy~)=(cosω2t+isinω2t)(x~+iy~)
Hence,
[ x y ] = [ cos ω 2 t sin ω 2 t − sin ω 2 t cos ω 2 t ] [ x ~ y ~ ] \left[\begin{matrix} x \\ y \end{matrix}\right] = \left[\begin{matrix} \cos\omega_2t & \sin\omega_2t \\ -\sin\omega_2t & \cos\omega_2t \end{matrix}\right]\left[\begin{matrix} \tilde x \\ \tilde y \end{matrix}\right] [xy]=[cosω2t−sinω2tsinω2tcosω2t][x~y~]
which is clearly a rotational matrix with angle ω 2 = Ω cos θ \omega_2 = \Omega\cos\theta ω2=Ωcosθ
T ′ = 2 π ω 2 = 2 π Ω cos θ = T 0 cos θ , with T 0 = 24 h T' = \frac{2\pi}{\omega_2} = \frac{2\pi}{\Omega\cos\theta} = \frac{T_0}{\cos\theta}, \quad\text{with } T_0 = 24h T′=ω22π=Ωcosθ2π=cosθT0,with T0=24h
Johan König (1712-1751)
L = r c m × p c m + L ′ = L o r b + L s p i n \bm{L} = \bm{r}_{cm}\times\bm{p}_{cm} + \bm{L}' = \bm{L}_{orb} + \bm{L}_{spin} L=rcm×pcm+L′=Lorb+Lspin
T = 1 2 M r ˙ c m 2 + T ′ = T c m + T r e l T = \frac{1}{2}M\bm{\dot r}_{cm}^2 + T' = T_{cm} + T_{rel} T=21Mr˙cm2+T′=Tcm+Trel
In which
T ′ = 1 2 ∑ m v a 2 = 1 2 ∑ m ( ω × r a ) 2 T' = \frac{1}{2}\sum mv_a^2 = \frac{1}{2}\sum m(\bm{\omega}\times\bm{r}_a)^2 T′=21∑mva2=21∑m(ω×ra)2
Note ( a × b ) 2 = a 2 b 2 − ( a ⋅ b ) 2 (\bm{a}\times\bm{b})^2 = a^2b^2-(\bm{a}\cdot\bm{b})^2 (a×b)2=a2b2−(a⋅b)2
T ′ = 1 2 ∑ m [ ω 2 r a 2 − ( ω ⋅ r a ) 2 ] T' = \frac{1}{2}\sum m[\omega^2r_a^2-(\bm{\omega}\cdot\bm{r}_a)^2] T′=21∑m[ω2ra2−(ω⋅ra)2]
Use the index notation,
T ′ = 1 2 ∑ m [ ω i ω i x a j x a j − ω i x a i ω j x a j ] = 1 2 ∑ m ω i ω j [ δ i j x a k x a k − x a i x a j ] T' = \frac{1}{2}\sum m[\omega_i\omega_ix_{aj}x_{aj} - \omega_ix_{ai}\omega_{j}x_{aj}] = \frac{1}{2}\sum m\omega_i\omega_j[\delta_{ij}x_{ak}x_{ak} - x_{ai}x_{aj}] T′=21∑m[ωiωixajxaj−ωixaiωj